42 #define LANCZOS_RESOLUTION 256
95 #define OFFSET(x) offsetof(LensfunContext, x)
96 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
109 {
"focal_length",
"focal length of video (zoom; constant for the duration of the use of this filter)",
OFFSET(focal_length),
AV_OPT_TYPE_FLOAT, {.dbl=18}, 0.0, DBL_MAX,
FLAGS },
110 {
"aperture",
"aperture (constant for the duration of the use of this filter)",
OFFSET(aperture),
AV_OPT_TYPE_FLOAT, {.dbl=3.5}, 0.0, DBL_MAX,
FLAGS },
111 {
"focus_distance",
"focus distance (constant for the duration of the use of this filter)",
OFFSET(focus_distance),
AV_OPT_TYPE_FLOAT, {.dbl=1000.0f}, 0.0, DBL_MAX,
FLAGS },
112 {
"scale",
"scale factor applied after corrections (0.0 means automatic scaling)",
OFFSET(scale),
AV_OPT_TYPE_FLOAT, {.dbl=0.0}, 0.0, DBL_MAX,
FLAGS },
113 {
"target_geometry",
"target geometry of the lens correction (only when geometry correction is enabled)",
OFFSET(target_geometry),
AV_OPT_TYPE_INT, {.i64=LF_RECTILINEAR}, 0, INT_MAX,
FLAGS,
"lens_geometry" },
114 {
"rectilinear",
"rectilinear lens (default)", 0,
AV_OPT_TYPE_CONST, {.i64=LF_RECTILINEAR}, 0, 0,
FLAGS,
"lens_geometry" },
116 {
"panoramic",
"panoramic (cylindrical)", 0,
AV_OPT_TYPE_CONST, {.i64=LF_PANORAMIC}, 0, 0,
FLAGS,
"lens_geometry" },
117 {
"equirectangular",
"equirectangular", 0,
AV_OPT_TYPE_CONST, {.i64=LF_EQUIRECTANGULAR}, 0, 0,
FLAGS,
"lens_geometry" },
118 {
"fisheye_orthographic",
"orthographic fisheye", 0,
AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_ORTHOGRAPHIC}, 0, 0,
FLAGS,
"lens_geometry" },
119 {
"fisheye_stereographic",
"stereographic fisheye", 0,
AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_STEREOGRAPHIC}, 0, 0,
FLAGS,
"lens_geometry" },
120 {
"fisheye_equisolid",
"equisolid fisheye", 0,
AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_EQUISOLID}, 0, 0,
FLAGS,
"lens_geometry" },
121 {
"fisheye_thoby",
"fisheye as measured by thoby", 0,
AV_OPT_TYPE_CONST, {.i64=LF_FISHEYE_THOBY}, 0, 0,
FLAGS,
"lens_geometry" },
136 const lfCamera **cameras;
137 const lfLens **lenses;
140 if (lf_db_load(db) != LF_NO_ERROR) {
147 const lfCamera *
const *cameras = lf_db_get_cameras(db);
151 for (
int i = 0; cameras && cameras[
i];
i++)
156 const lfLens *
const *lenses = lf_db_get_lenses(db);
160 for (
int i = 0; lenses && lenses[
i];
i++)
166 lensfun->
lens = lf_lens_create();
167 lensfun->
camera = lf_camera_create();
169 cameras = lf_db_find_cameras(db, lensfun->
make, lensfun->
model);
170 if (cameras && *cameras) {
171 lf_camera_copy(lensfun->
camera, *cameras);
182 if (lenses && *lenses) {
183 lf_lens_copy(lensfun->
lens, *lenses);
209 }
else if (x > -2.0f && x < 2.0f) {
210 return (2.0f * sin(
M_PI * x) * sin(
M_PI / 2.0f * x)) / (
M_PI *
M_PI * x * x);
227 lensfun->
camera->CropFactor,
229 inlink->
h, LF_PF_U8, lensfun->
reverse);
233 lf_modifier_enable_distortion_correction(lensfun->
modifier);
235 lf_modifier_enable_scaling(lensfun->
modifier, lensfun->
scale);
238 lf_modifier_enable_tca_correction(lensfun->
modifier);
252 lf_modifier_apply_subpixel_geometry_distortion(lensfun->
modifier,
254 inlink->
w, inlink->
h,
258 lf_modifier_apply_subpixel_distortion(lensfun->
modifier,
260 inlink->
w, inlink->
h,
268 lf_modifier_apply_geometry_distortion(lensfun->
modifier,
270 inlink->
w, inlink->
h,
296 const int slice_start =
thread_data->height * jobnr / nb_jobs;
299 lf_modifier_apply_color_modification(
thread_data->modifier,
319 const int slice_start =
thread_data->height * jobnr / nb_jobs;
322 int x, y,
i, j, rgb_index;
323 float interpolated, new_x, new_y, d, norm;
324 int new_x_int, new_y_int;
325 for (y = slice_start; y <
slice_end; ++y)
327 for (rgb_index = 0; rgb_index < 3; ++rgb_index) {
332 new_x_int =
thread_data->distortion_coords[x * 2 * 3 + y *
thread_data->width * 2 * 3 + rgb_index * 2] + 0.5f;
333 new_y_int =
thread_data->distortion_coords[x * 2 * 3 + y *
thread_data->width * 2 * 3 + rgb_index * 2 + 1] + 0.5f;
334 if (new_x_int < 0 || new_x_int >=
thread_data->width || new_y_int < 0 || new_y_int >=
thread_data->height) {
346 if (new_x_int < 0 || new_x_int + 1 >=
thread_data->width || new_y_int < 0 || new_y_int + 1 >=
thread_data->height) {
350 thread_data->data_in[ new_x_int * 3 + rgb_index + new_y_int *
thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y_int + 1 - new_y)
351 +
thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + new_y_int *
thread_data->linesize_in] * (new_x - new_x_int) * (new_y_int + 1 - new_y)
352 +
thread_data->data_in[ new_x_int * 3 + rgb_index + (new_y_int + 1) *
thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y - new_y_int)
353 +
thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + (new_y_int + 1) *
thread_data->linesize_in] * (new_x - new_x_int) * (new_y - new_y_int);
363 for (j = 0; j < 4; ++j)
364 for (
i = 0;
i < 4; ++
i) {
365 if (new_x_int +
i - 2 < 0 || new_x_int +
i - 2 >=
thread_data->width || new_y_int + j - 2 < 0 || new_y_int + j - 2 >=
thread_data->height)
367 d =
square(new_x - (new_x_int +
i - 2)) *
square(new_y - (new_y_int + j - 2));
372 interpolated +=
thread_data->data_in[(new_x_int +
i - 2) * 3 + rgb_index + (new_y_int + j - 2) *
thread_data->linesize_in] * d;
377 interpolated /= norm;
378 thread_data->data_out[x * 3 + rgb_index + y *
thread_data->linesize_out] = interpolated < 0.0f ? 0.0f : interpolated > 255.0f ? 255.0f : interpolated;
388 if (new_x_int < 0 || new_x_int >=
thread_data->width || new_y_int < 0 || new_y_int >=
thread_data->height) {
400 if (new_x_int < 0 || new_x_int + 1 >=
thread_data->width || new_y_int < 0 || new_y_int + 1 >=
thread_data->height) {
404 thread_data->data_in[ new_x_int * 3 + rgb_index + new_y_int *
thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y_int + 1 - new_y)
405 +
thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + new_y_int *
thread_data->linesize_in] * (new_x - new_x_int) * (new_y_int + 1 - new_y)
406 +
thread_data->data_in[ new_x_int * 3 + rgb_index + (new_y_int + 1) *
thread_data->linesize_in] * (new_x_int + 1 - new_x) * (new_y - new_y_int)
407 +
thread_data->data_in[(new_x_int + 1) * 3 + rgb_index + (new_y_int + 1) *
thread_data->linesize_in] * (new_x - new_x_int) * (new_y - new_y_int);
417 for (j = 0; j < 4; ++j)
418 for (
i = 0;
i < 4; ++
i) {
419 if (new_x_int +
i - 2 < 0 || new_x_int +
i - 2 >=
thread_data->width || new_y_int + j - 2 < 0 || new_y_int + j - 2 >=
thread_data->height)
421 d =
square(new_x - (new_x_int +
i - 2)) *
square(new_y - (new_y_int + j - 2));
426 interpolated +=
thread_data->data_in[(new_x_int +
i - 2) * 3 + rgb_index + (new_y_int + j - 2) *
thread_data->linesize_in] * d;
431 interpolated /= norm;
432 thread_data->data_out[x * 3 + rgb_index + y *
thread_data->linesize_out] = interpolated < 0.0f ? 0.0f : interpolated > 255.0f ? 255.0f : interpolated;
460 .data_in =
in->data[0],
461 .linesize_in =
in->linesize[0],
468 &vignetting_thread_data,
485 .data_in =
in->data[0],
486 .data_out =
out->data[0],
487 .linesize_in =
in->linesize[0],
488 .linesize_out =
out->linesize[0],
490 .mode = lensfun->
mode,
496 &distortion_correction_thread_data,
512 lf_camera_destroy(lensfun->
camera);
514 lf_lens_destroy(lensfun->
lens);
516 lf_modifier_destroy(lensfun->
modifier);
541 .description =
NULL_IF_CONFIG_SMALL(
"Apply correction to an image based on info derived from the lensfun database."),
548 .priv_class = &lensfun_class,
static const AVFilterPad inputs[]
static const AVFilterPad outputs[]
Mode
Frame type (Table 1a in 3GPP TS 26.101)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
simple assert() macros that are a bit more flexible than ISO C assert().
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Main libavfilter public API header.
#define flags(name, subs,...)
mode
Use these values in ebur128_init (or'ed).
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
int av_frame_make_writable(AVFrame *frame)
Ensure that the frame data is writable, avoiding data copy if possible.
#define AV_LOG_FATAL
Something went wrong and recovery is not possible.
#define AV_LOG_INFO
Standard information.
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
AVPixelFormat
Pixel format.
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
static uint32_t reverse(uint32_t num, int bits)
Describe the class of an AVClass context structure.
A link between two filters.
int w
agreed upon image width
int h
agreed upon image height
AVFilterContext * dst
dest filter
A filter pad used for either input or output.
const char * name
Pad name.
const char * name
Filter name.
AVFormatInternal * internal
An opaque field for libavformat internal usage.
This structure describes decoded (raw) audio or video data.
const float * interpolation
const float * distortion_coords
float * distortion_coords
#define av_malloc_array(a, b)
static int vignetting_filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static float lanczos_kernel(float x)
static int distortion_correction_filter_slice(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static const AVOption lensfun_options[]
static int query_formats(AVFilterContext *ctx)
static const AVFilterPad lensfun_outputs[]
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
AVFILTER_DEFINE_CLASS(lensfun)
static const AVFilterPad lensfun_inputs[]
static int config_props(AVFilterLink *inlink)
static float square(float x)
static av_cold int init(AVFilterContext *ctx)
static av_cold void uninit(AVFilterContext *ctx)
#define LANCZOS_RESOLUTION
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.