FFmpeg  4.4.4
rematrix.c
Go to the documentation of this file.
1 /*
2  * Copyright (C) 2011-2012 Michael Niedermayer (michaelni@gmx.at)
3  *
4  * This file is part of libswresample
5  *
6  * libswresample is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * libswresample is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with libswresample; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "swresample_internal.h"
22 #include "libavutil/avassert.h"
24 
25 #define TEMPLATE_REMATRIX_FLT
26 #include "rematrix_template.c"
27 #undef TEMPLATE_REMATRIX_FLT
28 
29 #define TEMPLATE_REMATRIX_DBL
30 #include "rematrix_template.c"
31 #undef TEMPLATE_REMATRIX_DBL
32 
33 #define TEMPLATE_REMATRIX_S16
34 #include "rematrix_template.c"
35 #define TEMPLATE_CLIP
36 #include "rematrix_template.c"
37 #undef TEMPLATE_CLIP
38 #undef TEMPLATE_REMATRIX_S16
39 
40 #define TEMPLATE_REMATRIX_S32
41 #include "rematrix_template.c"
42 #undef TEMPLATE_REMATRIX_S32
43 
44 #define FRONT_LEFT 0
45 #define FRONT_RIGHT 1
46 #define FRONT_CENTER 2
47 #define LOW_FREQUENCY 3
48 #define BACK_LEFT 4
49 #define BACK_RIGHT 5
50 #define FRONT_LEFT_OF_CENTER 6
51 #define FRONT_RIGHT_OF_CENTER 7
52 #define BACK_CENTER 8
53 #define SIDE_LEFT 9
54 #define SIDE_RIGHT 10
55 #define TOP_CENTER 11
56 #define TOP_FRONT_LEFT 12
57 #define TOP_FRONT_CENTER 13
58 #define TOP_FRONT_RIGHT 14
59 #define TOP_BACK_LEFT 15
60 #define TOP_BACK_CENTER 16
61 #define TOP_BACK_RIGHT 17
62 #define NUM_NAMED_CHANNELS 18
63 
64 int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
65 {
66  int nb_in, nb_out, in, out;
67 
68  if (!s || s->in_convert) // s needs to be allocated but not initialized
69  return AVERROR(EINVAL);
70  memset(s->matrix, 0, sizeof(s->matrix));
71  memset(s->matrix_flt, 0, sizeof(s->matrix_flt));
72  nb_in = (s->user_in_ch_count > 0) ? s->user_in_ch_count :
73  av_get_channel_layout_nb_channels(s->user_in_ch_layout);
74  nb_out = (s->user_out_ch_count > 0) ? s->user_out_ch_count :
75  av_get_channel_layout_nb_channels(s->user_out_ch_layout);
76  for (out = 0; out < nb_out; out++) {
77  for (in = 0; in < nb_in; in++)
78  s->matrix_flt[out][in] = s->matrix[out][in] = matrix[in];
79  matrix += stride;
80  }
81  s->rematrix_custom = 1;
82  return 0;
83 }
84 
85 static int even(int64_t layout){
86  if(!layout) return 1;
87  if(layout&(layout-1)) return 1;
88  return 0;
89 }
90 
91 static int64_t clean_layout(void *s, int64_t layout){
92  if(layout && layout != AV_CH_FRONT_CENTER && !(layout&(layout-1))) {
93  char buf[128];
94  av_get_channel_layout_string(buf, sizeof(buf), -1, layout);
95  av_log(s, AV_LOG_VERBOSE, "Treating %s as mono\n", buf);
96  return AV_CH_FRONT_CENTER;
97  }
98 
99  return layout;
100 }
101 
102 static int sane_layout(int64_t layout){
103  if(!(layout & AV_CH_LAYOUT_SURROUND)) // at least 1 front speaker
104  return 0;
105  if(!even(layout & (AV_CH_FRONT_LEFT | AV_CH_FRONT_RIGHT))) // no asymetric front
106  return 0;
107  if(!even(layout & (AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT))) // no asymetric side
108  return 0;
110  return 0;
112  return 0;
114  return 0;
115 
116  return 1;
117 }
118 
119 av_cold int swr_build_matrix(uint64_t in_ch_layout_param, uint64_t out_ch_layout_param,
120  double center_mix_level, double surround_mix_level,
121  double lfe_mix_level, double maxval,
122  double rematrix_volume, double *matrix_param,
123  int stride, enum AVMatrixEncoding matrix_encoding, void *log_context)
124 {
125  int i, j, out_i;
126  double matrix[NUM_NAMED_CHANNELS][NUM_NAMED_CHANNELS]={{0}};
127  int64_t unaccounted, in_ch_layout, out_ch_layout;
128  double maxcoef=0;
129  char buf[128];
130 
131  in_ch_layout = clean_layout(log_context, in_ch_layout_param);
132  out_ch_layout = clean_layout(log_context, out_ch_layout_param);
133 
134  if( out_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
135  && (in_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
136  )
137  out_ch_layout = AV_CH_LAYOUT_STEREO;
138 
139  if( in_ch_layout == AV_CH_LAYOUT_STEREO_DOWNMIX
140  && (out_ch_layout & AV_CH_LAYOUT_STEREO_DOWNMIX) == 0
141  )
142  in_ch_layout = AV_CH_LAYOUT_STEREO;
143 
144  if (in_ch_layout == AV_CH_LAYOUT_22POINT2 &&
145  out_ch_layout != AV_CH_LAYOUT_22POINT2) {
147  av_get_channel_layout_string(buf, sizeof(buf), -1, in_ch_layout);
148  av_log(log_context, AV_LOG_WARNING,
149  "Full-on remixing from 22.2 has not yet been implemented! "
150  "Processing the input as '%s'\n",
151  buf);
152  }
153 
154  if(!sane_layout(in_ch_layout)){
155  av_get_channel_layout_string(buf, sizeof(buf), -1, in_ch_layout_param);
156  av_log(log_context, AV_LOG_ERROR, "Input channel layout '%s' is not supported\n", buf);
157  return AVERROR(EINVAL);
158  }
159 
160  if(!sane_layout(out_ch_layout)){
161  av_get_channel_layout_string(buf, sizeof(buf), -1, out_ch_layout_param);
162  av_log(log_context, AV_LOG_ERROR, "Output channel layout '%s' is not supported\n", buf);
163  return AVERROR(EINVAL);
164  }
165 
166  for(i=0; i<FF_ARRAY_ELEMS(matrix); i++){
167  if(in_ch_layout & out_ch_layout & (1ULL<<i))
168  matrix[i][i]= 1.0;
169  }
170 
171  unaccounted= in_ch_layout & ~out_ch_layout;
172 
173 //FIXME implement dolby surround
174 //FIXME implement full ac3
175 
176 
177  if(unaccounted & AV_CH_FRONT_CENTER){
178  if((out_ch_layout & AV_CH_LAYOUT_STEREO) == AV_CH_LAYOUT_STEREO){
179  if(in_ch_layout & AV_CH_LAYOUT_STEREO) {
180  matrix[ FRONT_LEFT][FRONT_CENTER]+= center_mix_level;
181  matrix[FRONT_RIGHT][FRONT_CENTER]+= center_mix_level;
182  } else {
183  matrix[ FRONT_LEFT][FRONT_CENTER]+= M_SQRT1_2;
185  }
186  }else
187  av_assert0(0);
188  }
189  if(unaccounted & AV_CH_LAYOUT_STEREO){
190  if(out_ch_layout & AV_CH_FRONT_CENTER){
191  matrix[FRONT_CENTER][ FRONT_LEFT]+= M_SQRT1_2;
193  if(in_ch_layout & AV_CH_FRONT_CENTER)
194  matrix[FRONT_CENTER][ FRONT_CENTER] = center_mix_level*sqrt(2);
195  }else
196  av_assert0(0);
197  }
198 
199  if(unaccounted & AV_CH_BACK_CENTER){
200  if(out_ch_layout & AV_CH_BACK_LEFT){
201  matrix[ BACK_LEFT][BACK_CENTER]+= M_SQRT1_2;
202  matrix[BACK_RIGHT][BACK_CENTER]+= M_SQRT1_2;
203  }else if(out_ch_layout & AV_CH_SIDE_LEFT){
204  matrix[ SIDE_LEFT][BACK_CENTER]+= M_SQRT1_2;
205  matrix[SIDE_RIGHT][BACK_CENTER]+= M_SQRT1_2;
206  }else if(out_ch_layout & AV_CH_FRONT_LEFT){
207  if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY ||
208  matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
209  if (unaccounted & (AV_CH_BACK_LEFT | AV_CH_SIDE_LEFT)) {
210  matrix[FRONT_LEFT ][BACK_CENTER] -= surround_mix_level * M_SQRT1_2;
211  matrix[FRONT_RIGHT][BACK_CENTER] += surround_mix_level * M_SQRT1_2;
212  } else {
213  matrix[FRONT_LEFT ][BACK_CENTER] -= surround_mix_level;
214  matrix[FRONT_RIGHT][BACK_CENTER] += surround_mix_level;
215  }
216  } else {
217  matrix[ FRONT_LEFT][BACK_CENTER]+= surround_mix_level * M_SQRT1_2;
218  matrix[FRONT_RIGHT][BACK_CENTER]+= surround_mix_level * M_SQRT1_2;
219  }
220  }else if(out_ch_layout & AV_CH_FRONT_CENTER){
221  matrix[ FRONT_CENTER][BACK_CENTER]+= surround_mix_level * M_SQRT1_2;
222  }else
223  av_assert0(0);
224  }
225  if(unaccounted & AV_CH_BACK_LEFT){
226  if(out_ch_layout & AV_CH_BACK_CENTER){
227  matrix[BACK_CENTER][ BACK_LEFT]+= M_SQRT1_2;
228  matrix[BACK_CENTER][BACK_RIGHT]+= M_SQRT1_2;
229  }else if(out_ch_layout & AV_CH_SIDE_LEFT){
230  if(in_ch_layout & AV_CH_SIDE_LEFT){
231  matrix[ SIDE_LEFT][ BACK_LEFT]+= M_SQRT1_2;
232  matrix[SIDE_RIGHT][BACK_RIGHT]+= M_SQRT1_2;
233  }else{
234  matrix[ SIDE_LEFT][ BACK_LEFT]+= 1.0;
235  matrix[SIDE_RIGHT][BACK_RIGHT]+= 1.0;
236  }
237  }else if(out_ch_layout & AV_CH_FRONT_LEFT){
238  if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
239  matrix[FRONT_LEFT ][BACK_LEFT ] -= surround_mix_level * M_SQRT1_2;
240  matrix[FRONT_LEFT ][BACK_RIGHT] -= surround_mix_level * M_SQRT1_2;
241  matrix[FRONT_RIGHT][BACK_LEFT ] += surround_mix_level * M_SQRT1_2;
242  matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level * M_SQRT1_2;
243  } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
244  matrix[FRONT_LEFT ][BACK_LEFT ] -= surround_mix_level * SQRT3_2;
245  matrix[FRONT_LEFT ][BACK_RIGHT] -= surround_mix_level * M_SQRT1_2;
246  matrix[FRONT_RIGHT][BACK_LEFT ] += surround_mix_level * M_SQRT1_2;
247  matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level * SQRT3_2;
248  } else {
249  matrix[ FRONT_LEFT][ BACK_LEFT] += surround_mix_level;
250  matrix[FRONT_RIGHT][BACK_RIGHT] += surround_mix_level;
251  }
252  }else if(out_ch_layout & AV_CH_FRONT_CENTER){
253  matrix[ FRONT_CENTER][BACK_LEFT ]+= surround_mix_level*M_SQRT1_2;
254  matrix[ FRONT_CENTER][BACK_RIGHT]+= surround_mix_level*M_SQRT1_2;
255  }else
256  av_assert0(0);
257  }
258 
259  if(unaccounted & AV_CH_SIDE_LEFT){
260  if(out_ch_layout & AV_CH_BACK_LEFT){
261  /* if back channels do not exist in the input, just copy side
262  channels to back channels, otherwise mix side into back */
263  if (in_ch_layout & AV_CH_BACK_LEFT) {
264  matrix[BACK_LEFT ][SIDE_LEFT ] += M_SQRT1_2;
265  matrix[BACK_RIGHT][SIDE_RIGHT] += M_SQRT1_2;
266  } else {
267  matrix[BACK_LEFT ][SIDE_LEFT ] += 1.0;
268  matrix[BACK_RIGHT][SIDE_RIGHT] += 1.0;
269  }
270  }else if(out_ch_layout & AV_CH_BACK_CENTER){
271  matrix[BACK_CENTER][ SIDE_LEFT]+= M_SQRT1_2;
272  matrix[BACK_CENTER][SIDE_RIGHT]+= M_SQRT1_2;
273  }else if(out_ch_layout & AV_CH_FRONT_LEFT){
274  if (matrix_encoding == AV_MATRIX_ENCODING_DOLBY) {
275  matrix[FRONT_LEFT ][SIDE_LEFT ] -= surround_mix_level * M_SQRT1_2;
276  matrix[FRONT_LEFT ][SIDE_RIGHT] -= surround_mix_level * M_SQRT1_2;
277  matrix[FRONT_RIGHT][SIDE_LEFT ] += surround_mix_level * M_SQRT1_2;
278  matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level * M_SQRT1_2;
279  } else if (matrix_encoding == AV_MATRIX_ENCODING_DPLII) {
280  matrix[FRONT_LEFT ][SIDE_LEFT ] -= surround_mix_level * SQRT3_2;
281  matrix[FRONT_LEFT ][SIDE_RIGHT] -= surround_mix_level * M_SQRT1_2;
282  matrix[FRONT_RIGHT][SIDE_LEFT ] += surround_mix_level * M_SQRT1_2;
283  matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level * SQRT3_2;
284  } else {
285  matrix[ FRONT_LEFT][ SIDE_LEFT] += surround_mix_level;
286  matrix[FRONT_RIGHT][SIDE_RIGHT] += surround_mix_level;
287  }
288  }else if(out_ch_layout & AV_CH_FRONT_CENTER){
289  matrix[ FRONT_CENTER][SIDE_LEFT ]+= surround_mix_level * M_SQRT1_2;
290  matrix[ FRONT_CENTER][SIDE_RIGHT]+= surround_mix_level * M_SQRT1_2;
291  }else
292  av_assert0(0);
293  }
294 
295  if(unaccounted & AV_CH_FRONT_LEFT_OF_CENTER){
296  if(out_ch_layout & AV_CH_FRONT_LEFT){
297  matrix[ FRONT_LEFT][ FRONT_LEFT_OF_CENTER]+= 1.0;
298  matrix[FRONT_RIGHT][FRONT_RIGHT_OF_CENTER]+= 1.0;
299  }else if(out_ch_layout & AV_CH_FRONT_CENTER){
302  }else
303  av_assert0(0);
304  }
305  /* mix LFE into front left/right or center */
306  if (unaccounted & AV_CH_LOW_FREQUENCY) {
307  if (out_ch_layout & AV_CH_FRONT_CENTER) {
308  matrix[FRONT_CENTER][LOW_FREQUENCY] += lfe_mix_level;
309  } else if (out_ch_layout & AV_CH_FRONT_LEFT) {
310  matrix[FRONT_LEFT ][LOW_FREQUENCY] += lfe_mix_level * M_SQRT1_2;
311  matrix[FRONT_RIGHT][LOW_FREQUENCY] += lfe_mix_level * M_SQRT1_2;
312  } else
313  av_assert0(0);
314  }
315 
316  for(out_i=i=0; i<64; i++){
317  double sum=0;
318  int in_i=0;
319  if((out_ch_layout & (1ULL<<i)) == 0)
320  continue;
321  for(j=0; j<64; j++){
322  if((in_ch_layout & (1ULL<<j)) == 0)
323  continue;
324  if (i < FF_ARRAY_ELEMS(matrix) && j < FF_ARRAY_ELEMS(matrix[0]))
325  matrix_param[stride*out_i + in_i] = matrix[i][j];
326  else
327  matrix_param[stride*out_i + in_i] = i == j && (in_ch_layout & out_ch_layout & (1ULL<<i));
328  sum += fabs(matrix_param[stride*out_i + in_i]);
329  in_i++;
330  }
331  maxcoef= FFMAX(maxcoef, sum);
332  out_i++;
333  }
334  if(rematrix_volume < 0)
335  maxcoef = -rematrix_volume;
336 
337  if(maxcoef > maxval || rematrix_volume < 0){
338  maxcoef /= maxval;
339  for(i=0; i<SWR_CH_MAX; i++)
340  for(j=0; j<SWR_CH_MAX; j++){
341  matrix_param[stride*i + j] /= maxcoef;
342  }
343  }
344 
345  if(rematrix_volume > 0){
346  for(i=0; i<SWR_CH_MAX; i++)
347  for(j=0; j<SWR_CH_MAX; j++){
348  matrix_param[stride*i + j] *= rematrix_volume;
349  }
350  }
351 
352  av_log(log_context, AV_LOG_DEBUG, "Matrix coefficients:\n");
353  for(i=0; i<av_get_channel_layout_nb_channels(out_ch_layout); i++){
354  const char *c =
356  av_log(log_context, AV_LOG_DEBUG, "%s: ", c ? c : "?");
357  for(j=0; j<av_get_channel_layout_nb_channels(in_ch_layout); j++){
359  av_log(log_context, AV_LOG_DEBUG, "%s:%f ", c ? c : "?", matrix_param[stride*i + j]);
360  }
361  av_log(log_context, AV_LOG_DEBUG, "\n");
362  }
363  return 0;
364 }
365 
367 {
368  double maxval;
369  int ret;
370 
371  if (s->rematrix_maxval > 0) {
372  maxval = s->rematrix_maxval;
373  } else if ( av_get_packed_sample_fmt(s->out_sample_fmt) < AV_SAMPLE_FMT_FLT
374  || av_get_packed_sample_fmt(s->int_sample_fmt) < AV_SAMPLE_FMT_FLT) {
375  maxval = 1.0;
376  } else
377  maxval = INT_MAX;
378 
379  memset(s->matrix, 0, sizeof(s->matrix));
380  ret = swr_build_matrix(s->in_ch_layout, s->out_ch_layout,
381  s->clev, s->slev, s->lfe_mix_level,
382  maxval, s->rematrix_volume, (double*)s->matrix,
383  s->matrix[1] - s->matrix[0], s->matrix_encoding, s);
384 
385  if (ret >= 0 && s->int_sample_fmt == AV_SAMPLE_FMT_FLTP) {
386  int i, j;
387  for (i = 0; i < FF_ARRAY_ELEMS(s->matrix[0]); i++)
388  for (j = 0; j < FF_ARRAY_ELEMS(s->matrix[0]); j++)
389  s->matrix_flt[i][j] = s->matrix[i][j];
390  }
391 
392  return ret;
393 }
394 
396  int i, j;
397  int nb_in = s->used_ch_count;
398  int nb_out = s->out.ch_count;
399 
400  s->mix_any_f = NULL;
401 
402  if (!s->rematrix_custom) {
403  int r = auto_matrix(s);
404  if (r)
405  return r;
406  }
407  if (s->midbuf.fmt == AV_SAMPLE_FMT_S16P){
408  int maxsum = 0;
409  s->native_matrix = av_calloc(nb_in * nb_out, sizeof(int));
410  s->native_one = av_mallocz(sizeof(int));
411  if (!s->native_matrix || !s->native_one)
412  return AVERROR(ENOMEM);
413  for (i = 0; i < nb_out; i++) {
414  double rem = 0;
415  int sum = 0;
416 
417  for (j = 0; j < nb_in; j++) {
418  double target = s->matrix[i][j] * 32768 + rem;
419  ((int*)s->native_matrix)[i * nb_in + j] = lrintf(target);
420  rem += target - ((int*)s->native_matrix)[i * nb_in + j];
421  sum += FFABS(((int*)s->native_matrix)[i * nb_in + j]);
422  }
423  maxsum = FFMAX(maxsum, sum);
424  }
425  *((int*)s->native_one) = 32768;
426  if (maxsum <= 32768) {
427  s->mix_1_1_f = (mix_1_1_func_type*)copy_s16;
428  s->mix_2_1_f = (mix_2_1_func_type*)sum2_s16;
429  s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s16(s);
430  } else {
431  s->mix_1_1_f = (mix_1_1_func_type*)copy_clip_s16;
432  s->mix_2_1_f = (mix_2_1_func_type*)sum2_clip_s16;
433  s->mix_any_f = (mix_any_func_type*)get_mix_any_func_clip_s16(s);
434  }
435  }else if(s->midbuf.fmt == AV_SAMPLE_FMT_FLTP){
436  s->native_matrix = av_calloc(nb_in * nb_out, sizeof(float));
437  s->native_one = av_mallocz(sizeof(float));
438  if (!s->native_matrix || !s->native_one)
439  return AVERROR(ENOMEM);
440  for (i = 0; i < nb_out; i++)
441  for (j = 0; j < nb_in; j++)
442  ((float*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
443  *((float*)s->native_one) = 1.0;
444  s->mix_1_1_f = (mix_1_1_func_type*)copy_float;
445  s->mix_2_1_f = (mix_2_1_func_type*)sum2_float;
446  s->mix_any_f = (mix_any_func_type*)get_mix_any_func_float(s);
447  }else if(s->midbuf.fmt == AV_SAMPLE_FMT_DBLP){
448  s->native_matrix = av_calloc(nb_in * nb_out, sizeof(double));
449  s->native_one = av_mallocz(sizeof(double));
450  if (!s->native_matrix || !s->native_one)
451  return AVERROR(ENOMEM);
452  for (i = 0; i < nb_out; i++)
453  for (j = 0; j < nb_in; j++)
454  ((double*)s->native_matrix)[i * nb_in + j] = s->matrix[i][j];
455  *((double*)s->native_one) = 1.0;
456  s->mix_1_1_f = (mix_1_1_func_type*)copy_double;
457  s->mix_2_1_f = (mix_2_1_func_type*)sum2_double;
458  s->mix_any_f = (mix_any_func_type*)get_mix_any_func_double(s);
459  }else if(s->midbuf.fmt == AV_SAMPLE_FMT_S32P){
460  s->native_one = av_mallocz(sizeof(int));
461  if (!s->native_one)
462  return AVERROR(ENOMEM);
463  s->native_matrix = av_calloc(nb_in * nb_out, sizeof(int));
464  if (!s->native_matrix) {
465  av_freep(&s->native_one);
466  return AVERROR(ENOMEM);
467  }
468  for (i = 0; i < nb_out; i++) {
469  double rem = 0;
470 
471  for (j = 0; j < nb_in; j++) {
472  double target = s->matrix[i][j] * 32768 + rem;
473  ((int*)s->native_matrix)[i * nb_in + j] = lrintf(target);
474  rem += target - ((int*)s->native_matrix)[i * nb_in + j];
475  }
476  }
477  *((int*)s->native_one) = 32768;
478  s->mix_1_1_f = (mix_1_1_func_type*)copy_s32;
479  s->mix_2_1_f = (mix_2_1_func_type*)sum2_s32;
480  s->mix_any_f = (mix_any_func_type*)get_mix_any_func_s32(s);
481  }else
482  av_assert0(0);
483  //FIXME quantize for integeres
484  for (i = 0; i < SWR_CH_MAX; i++) {
485  int ch_in=0;
486  for (j = 0; j < SWR_CH_MAX; j++) {
487  s->matrix32[i][j]= lrintf(s->matrix[i][j] * 32768);
488  if(s->matrix[i][j])
489  s->matrix_ch[i][++ch_in]= j;
490  }
491  s->matrix_ch[i][0]= ch_in;
492  }
493 
494  if(HAVE_X86ASM && HAVE_MMX)
495  return swri_rematrix_init_x86(s);
496 
497  return 0;
498 }
499 
501  av_freep(&s->native_matrix);
502  av_freep(&s->native_one);
503  av_freep(&s->native_simd_matrix);
504  av_freep(&s->native_simd_one);
505 }
506 
507 int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy){
508  int out_i, in_i, i, j;
509  int len1 = 0;
510  int off = 0;
511 
512  if(s->mix_any_f) {
513  s->mix_any_f(out->ch, (const uint8_t **)in->ch, s->native_matrix, len);
514  return 0;
515  }
516 
517  if(s->mix_2_1_simd || s->mix_1_1_simd){
518  len1= len&~15;
519  off = len1 * out->bps;
520  }
521 
522  av_assert0(!s->out_ch_layout || out->ch_count == av_get_channel_layout_nb_channels(s->out_ch_layout));
523  av_assert0(!s-> in_ch_layout || in ->ch_count == av_get_channel_layout_nb_channels(s-> in_ch_layout));
524 
525  for(out_i=0; out_i<out->ch_count; out_i++){
526  switch(s->matrix_ch[out_i][0]){
527  case 0:
528  if(mustcopy)
529  memset(out->ch[out_i], 0, len * av_get_bytes_per_sample(s->int_sample_fmt));
530  break;
531  case 1:
532  in_i= s->matrix_ch[out_i][1];
533  if(s->matrix[out_i][in_i]!=1.0){
534  if(s->mix_1_1_simd && len1)
535  s->mix_1_1_simd(out->ch[out_i] , in->ch[in_i] , s->native_simd_matrix, in->ch_count*out_i + in_i, len1);
536  if(len != len1)
537  s->mix_1_1_f (out->ch[out_i]+off, in->ch[in_i]+off, s->native_matrix, in->ch_count*out_i + in_i, len-len1);
538  }else if(mustcopy){
539  memcpy(out->ch[out_i], in->ch[in_i], len*out->bps);
540  }else{
541  out->ch[out_i]= in->ch[in_i];
542  }
543  break;
544  case 2: {
545  int in_i1 = s->matrix_ch[out_i][1];
546  int in_i2 = s->matrix_ch[out_i][2];
547  if(s->mix_2_1_simd && len1)
548  s->mix_2_1_simd(out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_simd_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
549  else
550  s->mix_2_1_f (out->ch[out_i] , in->ch[in_i1] , in->ch[in_i2] , s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len1);
551  if(len != len1)
552  s->mix_2_1_f (out->ch[out_i]+off, in->ch[in_i1]+off, in->ch[in_i2]+off, s->native_matrix, in->ch_count*out_i + in_i1, in->ch_count*out_i + in_i2, len-len1);
553  break;}
554  default:
555  if(s->int_sample_fmt == AV_SAMPLE_FMT_FLTP){
556  for(i=0; i<len; i++){
557  float v=0;
558  for(j=0; j<s->matrix_ch[out_i][0]; j++){
559  in_i= s->matrix_ch[out_i][1+j];
560  v+= ((float*)in->ch[in_i])[i] * s->matrix_flt[out_i][in_i];
561  }
562  ((float*)out->ch[out_i])[i]= v;
563  }
564  }else if(s->int_sample_fmt == AV_SAMPLE_FMT_DBLP){
565  for(i=0; i<len; i++){
566  double v=0;
567  for(j=0; j<s->matrix_ch[out_i][0]; j++){
568  in_i= s->matrix_ch[out_i][1+j];
569  v+= ((double*)in->ch[in_i])[i] * s->matrix[out_i][in_i];
570  }
571  ((double*)out->ch[out_i])[i]= v;
572  }
573  }else{
574  for(i=0; i<len; i++){
575  int v=0;
576  for(j=0; j<s->matrix_ch[out_i][0]; j++){
577  in_i= s->matrix_ch[out_i][1+j];
578  v+= ((int16_t*)in->ch[in_i])[i] * s->matrix32[out_i][in_i];
579  }
580  ((int16_t*)out->ch[out_i])[i]= (v + 16384)>>15;
581  }
582  }
583  }
584  }
585  return 0;
586 }
#define SWR_CH_MAX
Definition: af_amerge.c:35
#define av_cold
Definition: attributes.h:88
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
uint8_t
#define SQRT3_2
simple assert() macros that are a bit more flexible than ISO C assert().
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
#define s(width, name)
Definition: cbs_vp9.c:257
uint64_t layout
audio channel layout utility functions
#define FFMAX(a, b)
Definition: common.h:103
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define HAVE_X86ASM
Definition: config.h:199
#define HAVE_MMX
Definition: config.h:64
#define NULL
Definition: coverity.c:32
static __device__ float fabs(float a)
Definition: cuda_runtime.h:182
#define AV_CH_LAYOUT_STEREO_DOWNMIX
#define AV_CH_LAYOUT_SURROUND
#define AV_CH_LAYOUT_7POINT1_WIDE_BACK
void av_get_channel_layout_string(char *buf, int buf_size, int nb_channels, uint64_t channel_layout)
Return a description of a channel layout.
#define AV_CH_LAYOUT_STEREO
AVMatrixEncoding
#define AV_CH_LAYOUT_22POINT2
int av_get_channel_layout_nb_channels(uint64_t channel_layout)
Return the number of channels in the channel layout.
uint64_t av_channel_layout_extract_channel(uint64_t channel_layout, int index)
Get the channel with the given index in channel_layout.
const char * av_get_channel_name(uint64_t channel)
Get the name of a given channel.
@ AV_MATRIX_ENCODING_DOLBY
@ AV_MATRIX_ENCODING_DPLII
#define AV_CH_SIDE_LEFT
#define AV_CH_FRONT_RIGHT
#define AV_CH_FRONT_RIGHT_OF_CENTER
#define AV_CH_BACK_CENTER
#define AV_CH_FRONT_LEFT_OF_CENTER
#define AV_CH_BACK_RIGHT
#define AV_CH_FRONT_CENTER
#define AV_CH_SIDE_RIGHT
#define AV_CH_BACK_LEFT
#define AV_CH_LOW_FREQUENCY
#define AV_CH_FRONT_LEFT
#define AVERROR(e)
Definition: error.h:43
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:215
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:210
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
void * av_mallocz(size_t size)
Allocate a memory block with alignment suitable for all memory accesses (including vectors if availab...
Definition: mem.c:237
void * av_calloc(size_t nmemb, size_t size)
Non-inlined equivalent of av_mallocz_array().
Definition: mem.c:245
int av_get_bytes_per_sample(enum AVSampleFormat sample_fmt)
Return number of bytes per sample.
Definition: samplefmt.c:106
enum AVSampleFormat av_get_packed_sample_fmt(enum AVSampleFormat sample_fmt)
Get the packed alternative form of the given sample format.
Definition: samplefmt.c:75
@ AV_SAMPLE_FMT_FLTP
float, planar
Definition: samplefmt.h:69
@ AV_SAMPLE_FMT_S16P
signed 16 bits, planar
Definition: samplefmt.h:67
@ AV_SAMPLE_FMT_FLT
float
Definition: samplefmt.h:63
@ AV_SAMPLE_FMT_S32P
signed 32 bits, planar
Definition: samplefmt.h:68
@ AV_SAMPLE_FMT_DBLP
double, planar
Definition: samplefmt.h:70
av_cold int swr_build_matrix(uint64_t in_ch_layout_param, uint64_t out_ch_layout_param, double center_mix_level, double surround_mix_level, double lfe_mix_level, double maxval, double rematrix_volume, double *matrix_param, int stride, enum AVMatrixEncoding matrix_encoding, void *log_context)
Generate a channel mixing matrix.
Definition: rematrix.c:119
int swr_set_matrix(struct SwrContext *s, const double *matrix, int stride)
Set a customized remix matrix.
Definition: rematrix.c:64
int i
Definition: input.c:407
#define lrintf(x)
Definition: libm_mips.h:70
int stride
Definition: mace.c:144
#define M_SQRT1_2
Definition: mathematics.h:58
int swri_rematrix(SwrContext *s, AudioData *out, AudioData *in, int len, int mustcopy)
Definition: rematrix.c:507
av_cold int swri_rematrix_init(SwrContext *s)
Definition: rematrix.c:395
#define FRONT_LEFT_OF_CENTER
Definition: rematrix.c:50
static int even(int64_t layout)
Definition: rematrix.c:85
#define BACK_LEFT
Definition: rematrix.c:48
#define NUM_NAMED_CHANNELS
Definition: rematrix.c:62
#define SIDE_RIGHT
Definition: rematrix.c:54
static av_cold int auto_matrix(SwrContext *s)
Definition: rematrix.c:366
#define FRONT_LEFT
Definition: rematrix.c:44
#define FRONT_RIGHT_OF_CENTER
Definition: rematrix.c:51
static int sane_layout(int64_t layout)
Definition: rematrix.c:102
#define BACK_RIGHT
Definition: rematrix.c:49
#define FRONT_RIGHT
Definition: rematrix.c:45
#define LOW_FREQUENCY
Definition: rematrix.c:47
#define FRONT_CENTER
Definition: rematrix.c:46
#define SIDE_LEFT
Definition: rematrix.c:53
static int64_t clean_layout(void *s, int64_t layout)
Definition: rematrix.c:91
av_cold void swri_rematrix_free(SwrContext *s)
Definition: rematrix.c:500
#define BACK_CENTER
Definition: rematrix.c:52
#define FF_ARRAY_ELEMS(a)
Audio buffer used for intermediate storage between conversion phases.
Definition: audio_data.h:37
The libswresample context.
void() mix_1_1_func_type(void *out, const void *in, void *coeffp, integer index, integer len)
int swri_rematrix_init_x86(struct SwrContext *s)
void() mix_any_func_type(uint8_t **out, const uint8_t **in1, void *coeffp, integer len)
void() mix_2_1_func_type(void *out, const void *in1, const void *in2, void *coeffp, integer index1, integer index2, integer len)
#define av_freep(p)
#define av_log(a,...)
FILE * out
Definition: movenc.c:54
const char * r
Definition: vf_curves.c:116
int len
static double c[64]