FFmpeg  4.4.4
h264_slice.c
Go to the documentation of this file.
1 /*
2  * H.26L/H.264/AVC/JVT/14496-10/... decoder
3  * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * H.264 / AVC / MPEG-4 part10 codec.
25  * @author Michael Niedermayer <michaelni@gmx.at>
26  */
27 
28 #include "libavutil/avassert.h"
29 #include "libavutil/display.h"
30 #include "libavutil/imgutils.h"
31 #include "libavutil/stereo3d.h"
32 #include "internal.h"
33 #include "cabac.h"
34 #include "cabac_functions.h"
35 #include "error_resilience.h"
36 #include "avcodec.h"
37 #include "h264.h"
38 #include "h264dec.h"
39 #include "h264data.h"
40 #include "h264chroma.h"
41 #include "h264_mvpred.h"
42 #include "h264_ps.h"
43 #include "golomb.h"
44 #include "mathops.h"
45 #include "mpegutils.h"
46 #include "mpegvideo.h"
47 #include "rectangle.h"
48 #include "thread.h"
49 
50 static const uint8_t field_scan[16+1] = {
51  0 + 0 * 4, 0 + 1 * 4, 1 + 0 * 4, 0 + 2 * 4,
52  0 + 3 * 4, 1 + 1 * 4, 1 + 2 * 4, 1 + 3 * 4,
53  2 + 0 * 4, 2 + 1 * 4, 2 + 2 * 4, 2 + 3 * 4,
54  3 + 0 * 4, 3 + 1 * 4, 3 + 2 * 4, 3 + 3 * 4,
55 };
56 
57 static const uint8_t field_scan8x8[64+1] = {
58  0 + 0 * 8, 0 + 1 * 8, 0 + 2 * 8, 1 + 0 * 8,
59  1 + 1 * 8, 0 + 3 * 8, 0 + 4 * 8, 1 + 2 * 8,
60  2 + 0 * 8, 1 + 3 * 8, 0 + 5 * 8, 0 + 6 * 8,
61  0 + 7 * 8, 1 + 4 * 8, 2 + 1 * 8, 3 + 0 * 8,
62  2 + 2 * 8, 1 + 5 * 8, 1 + 6 * 8, 1 + 7 * 8,
63  2 + 3 * 8, 3 + 1 * 8, 4 + 0 * 8, 3 + 2 * 8,
64  2 + 4 * 8, 2 + 5 * 8, 2 + 6 * 8, 2 + 7 * 8,
65  3 + 3 * 8, 4 + 1 * 8, 5 + 0 * 8, 4 + 2 * 8,
66  3 + 4 * 8, 3 + 5 * 8, 3 + 6 * 8, 3 + 7 * 8,
67  4 + 3 * 8, 5 + 1 * 8, 6 + 0 * 8, 5 + 2 * 8,
68  4 + 4 * 8, 4 + 5 * 8, 4 + 6 * 8, 4 + 7 * 8,
69  5 + 3 * 8, 6 + 1 * 8, 6 + 2 * 8, 5 + 4 * 8,
70  5 + 5 * 8, 5 + 6 * 8, 5 + 7 * 8, 6 + 3 * 8,
71  7 + 0 * 8, 7 + 1 * 8, 6 + 4 * 8, 6 + 5 * 8,
72  6 + 6 * 8, 6 + 7 * 8, 7 + 2 * 8, 7 + 3 * 8,
73  7 + 4 * 8, 7 + 5 * 8, 7 + 6 * 8, 7 + 7 * 8,
74 };
75 
76 static const uint8_t field_scan8x8_cavlc[64+1] = {
77  0 + 0 * 8, 1 + 1 * 8, 2 + 0 * 8, 0 + 7 * 8,
78  2 + 2 * 8, 2 + 3 * 8, 2 + 4 * 8, 3 + 3 * 8,
79  3 + 4 * 8, 4 + 3 * 8, 4 + 4 * 8, 5 + 3 * 8,
80  5 + 5 * 8, 7 + 0 * 8, 6 + 6 * 8, 7 + 4 * 8,
81  0 + 1 * 8, 0 + 3 * 8, 1 + 3 * 8, 1 + 4 * 8,
82  1 + 5 * 8, 3 + 1 * 8, 2 + 5 * 8, 4 + 1 * 8,
83  3 + 5 * 8, 5 + 1 * 8, 4 + 5 * 8, 6 + 1 * 8,
84  5 + 6 * 8, 7 + 1 * 8, 6 + 7 * 8, 7 + 5 * 8,
85  0 + 2 * 8, 0 + 4 * 8, 0 + 5 * 8, 2 + 1 * 8,
86  1 + 6 * 8, 4 + 0 * 8, 2 + 6 * 8, 5 + 0 * 8,
87  3 + 6 * 8, 6 + 0 * 8, 4 + 6 * 8, 6 + 2 * 8,
88  5 + 7 * 8, 6 + 4 * 8, 7 + 2 * 8, 7 + 6 * 8,
89  1 + 0 * 8, 1 + 2 * 8, 0 + 6 * 8, 3 + 0 * 8,
90  1 + 7 * 8, 3 + 2 * 8, 2 + 7 * 8, 4 + 2 * 8,
91  3 + 7 * 8, 5 + 2 * 8, 4 + 7 * 8, 5 + 4 * 8,
92  6 + 3 * 8, 6 + 5 * 8, 7 + 3 * 8, 7 + 7 * 8,
93 };
94 
95 // zigzag_scan8x8_cavlc[i] = zigzag_scan8x8[(i/4) + 16*(i%4)]
96 static const uint8_t zigzag_scan8x8_cavlc[64+1] = {
97  0 + 0 * 8, 1 + 1 * 8, 1 + 2 * 8, 2 + 2 * 8,
98  4 + 1 * 8, 0 + 5 * 8, 3 + 3 * 8, 7 + 0 * 8,
99  3 + 4 * 8, 1 + 7 * 8, 5 + 3 * 8, 6 + 3 * 8,
100  2 + 7 * 8, 6 + 4 * 8, 5 + 6 * 8, 7 + 5 * 8,
101  1 + 0 * 8, 2 + 0 * 8, 0 + 3 * 8, 3 + 1 * 8,
102  3 + 2 * 8, 0 + 6 * 8, 4 + 2 * 8, 6 + 1 * 8,
103  2 + 5 * 8, 2 + 6 * 8, 6 + 2 * 8, 5 + 4 * 8,
104  3 + 7 * 8, 7 + 3 * 8, 4 + 7 * 8, 7 + 6 * 8,
105  0 + 1 * 8, 3 + 0 * 8, 0 + 4 * 8, 4 + 0 * 8,
106  2 + 3 * 8, 1 + 5 * 8, 5 + 1 * 8, 5 + 2 * 8,
107  1 + 6 * 8, 3 + 5 * 8, 7 + 1 * 8, 4 + 5 * 8,
108  4 + 6 * 8, 7 + 4 * 8, 5 + 7 * 8, 6 + 7 * 8,
109  0 + 2 * 8, 2 + 1 * 8, 1 + 3 * 8, 5 + 0 * 8,
110  1 + 4 * 8, 2 + 4 * 8, 6 + 0 * 8, 4 + 3 * 8,
111  0 + 7 * 8, 4 + 4 * 8, 7 + 2 * 8, 3 + 6 * 8,
112  5 + 5 * 8, 6 + 5 * 8, 6 + 6 * 8, 7 + 7 * 8,
113 };
114 
115 static void release_unused_pictures(H264Context *h, int remove_current)
116 {
117  int i;
118 
119  /* release non reference frames */
120  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
121  if (h->DPB[i].f->buf[0] && !h->DPB[i].reference &&
122  (remove_current || &h->DPB[i] != h->cur_pic_ptr)) {
123  ff_h264_unref_picture(h, &h->DPB[i]);
124  }
125  }
126 }
127 
128 static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
129 {
130  const H264Context *h = sl->h264;
131  int alloc_size = FFALIGN(FFABS(linesize) + 32, 32);
132 
133  av_fast_malloc(&sl->bipred_scratchpad, &sl->bipred_scratchpad_allocated, 16 * 6 * alloc_size);
134  // edge emu needs blocksize + filter length - 1
135  // (= 21x21 for H.264)
136  av_fast_malloc(&sl->edge_emu_buffer, &sl->edge_emu_buffer_allocated, alloc_size * 2 * 21);
137 
139  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
141  h->mb_width * 16 * 3 * sizeof(uint8_t) * 2);
142 
143  if (!sl->bipred_scratchpad || !sl->edge_emu_buffer ||
144  !sl->top_borders[0] || !sl->top_borders[1]) {
147  av_freep(&sl->top_borders[0]);
148  av_freep(&sl->top_borders[1]);
149 
152  sl->top_borders_allocated[0] = 0;
153  sl->top_borders_allocated[1] = 0;
154  return AVERROR(ENOMEM);
155  }
156 
157  return 0;
158 }
159 
161 {
162  const int big_mb_num = h->mb_stride * (h->mb_height + 1) + 1;
163  const int mb_array_size = h->mb_stride * h->mb_height;
164  const int b4_stride = h->mb_width * 4 + 1;
165  const int b4_array_size = b4_stride * h->mb_height * 4;
166 
167  h->qscale_table_pool = av_buffer_pool_init(big_mb_num + h->mb_stride,
169  h->mb_type_pool = av_buffer_pool_init((big_mb_num + h->mb_stride) *
170  sizeof(uint32_t), av_buffer_allocz);
171  h->motion_val_pool = av_buffer_pool_init(2 * (b4_array_size + 4) *
172  sizeof(int16_t), av_buffer_allocz);
173  h->ref_index_pool = av_buffer_pool_init(4 * mb_array_size, av_buffer_allocz);
174 
175  if (!h->qscale_table_pool || !h->mb_type_pool || !h->motion_val_pool ||
176  !h->ref_index_pool) {
177  av_buffer_pool_uninit(&h->qscale_table_pool);
178  av_buffer_pool_uninit(&h->mb_type_pool);
179  av_buffer_pool_uninit(&h->motion_val_pool);
180  av_buffer_pool_uninit(&h->ref_index_pool);
181  return AVERROR(ENOMEM);
182  }
183 
184  return 0;
185 }
186 
188 {
189  int i, ret = 0;
190 
191  av_assert0(!pic->f->data[0]);
192 
193  pic->tf.f = pic->f;
194  ret = ff_thread_get_buffer(h->avctx, &pic->tf, pic->reference ?
196  if (ret < 0)
197  goto fail;
198 
199  if (h->avctx->hwaccel) {
200  const AVHWAccel *hwaccel = h->avctx->hwaccel;
202  if (hwaccel->frame_priv_data_size) {
204  if (!pic->hwaccel_priv_buf)
205  return AVERROR(ENOMEM);
207  }
208  }
209  if (CONFIG_GRAY && !h->avctx->hwaccel && h->flags & AV_CODEC_FLAG_GRAY && pic->f->data[2]) {
210  int h_chroma_shift, v_chroma_shift;
212  &h_chroma_shift, &v_chroma_shift);
213 
214  for(i=0; i<AV_CEIL_RSHIFT(pic->f->height, v_chroma_shift); i++) {
215  memset(pic->f->data[1] + pic->f->linesize[1]*i,
216  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
217  memset(pic->f->data[2] + pic->f->linesize[2]*i,
218  0x80, AV_CEIL_RSHIFT(pic->f->width, h_chroma_shift));
219  }
220  }
221 
222  if (!h->qscale_table_pool) {
223  ret = init_table_pools(h);
224  if (ret < 0)
225  goto fail;
226  }
227 
228  pic->qscale_table_buf = av_buffer_pool_get(h->qscale_table_pool);
229  pic->mb_type_buf = av_buffer_pool_get(h->mb_type_pool);
230  if (!pic->qscale_table_buf || !pic->mb_type_buf)
231  goto fail;
232 
233  pic->mb_type = (uint32_t*)pic->mb_type_buf->data + 2 * h->mb_stride + 1;
234  pic->qscale_table = pic->qscale_table_buf->data + 2 * h->mb_stride + 1;
235 
236  for (i = 0; i < 2; i++) {
237  pic->motion_val_buf[i] = av_buffer_pool_get(h->motion_val_pool);
238  pic->ref_index_buf[i] = av_buffer_pool_get(h->ref_index_pool);
239  if (!pic->motion_val_buf[i] || !pic->ref_index_buf[i])
240  goto fail;
241 
242  pic->motion_val[i] = (int16_t (*)[2])pic->motion_val_buf[i]->data + 4;
243  pic->ref_index[i] = pic->ref_index_buf[i]->data;
244  }
245 
246  pic->pps_buf = av_buffer_ref(h->ps.pps_ref);
247  if (!pic->pps_buf)
248  goto fail;
249  pic->pps = (const PPS*)pic->pps_buf->data;
250 
251  pic->mb_width = h->mb_width;
252  pic->mb_height = h->mb_height;
253  pic->mb_stride = h->mb_stride;
254 
255  return 0;
256 fail:
257  ff_h264_unref_picture(h, pic);
258  return (ret < 0) ? ret : AVERROR(ENOMEM);
259 }
260 
262 {
263  int i;
264 
265  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
266  if (!h->DPB[i].f->buf[0])
267  return i;
268  }
269  return AVERROR_INVALIDDATA;
270 }
271 
272 
273 #define IN_RANGE(a, b, size) (((void*)(a) >= (void*)(b)) && ((void*)(a) < (void*)((b) + (size))))
274 
275 #define REBASE_PICTURE(pic, new_ctx, old_ctx) \
276  (((pic) && (pic) >= (old_ctx)->DPB && \
277  (pic) < (old_ctx)->DPB + H264_MAX_PICTURE_COUNT) ? \
278  &(new_ctx)->DPB[(pic) - (old_ctx)->DPB] : NULL)
279 
280 static void copy_picture_range(H264Picture **to, H264Picture **from, int count,
281  H264Context *new_base,
282  H264Context *old_base)
283 {
284  int i;
285 
286  for (i = 0; i < count; i++) {
287  av_assert1(!from[i] ||
288  IN_RANGE(from[i], old_base, 1) ||
289  IN_RANGE(from[i], old_base->DPB, H264_MAX_PICTURE_COUNT));
290  to[i] = REBASE_PICTURE(from[i], new_base, old_base);
291  }
292 }
293 
295 
297  const AVCodecContext *src)
298 {
299  H264Context *h = dst->priv_data, *h1 = src->priv_data;
300  int inited = h->context_initialized, err = 0;
301  int need_reinit = 0;
302  int i, ret;
303 
304  if (dst == src)
305  return 0;
306 
307  if (inited && !h1->ps.sps)
308  return AVERROR_INVALIDDATA;
309 
310  if (inited &&
311  (h->width != h1->width ||
312  h->height != h1->height ||
313  h->mb_width != h1->mb_width ||
314  h->mb_height != h1->mb_height ||
315  !h->ps.sps ||
316  h->ps.sps->bit_depth_luma != h1->ps.sps->bit_depth_luma ||
317  h->ps.sps->chroma_format_idc != h1->ps.sps->chroma_format_idc ||
318  h->ps.sps->colorspace != h1->ps.sps->colorspace)) {
319  need_reinit = 1;
320  }
321 
322  /* copy block_offset since frame_start may not be called */
323  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
324 
325  // SPS/PPS
326  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.sps_list); i++) {
327  ret = av_buffer_replace(&h->ps.sps_list[i], h1->ps.sps_list[i]);
328  if (ret < 0)
329  return ret;
330  }
331  for (i = 0; i < FF_ARRAY_ELEMS(h->ps.pps_list); i++) {
332  ret = av_buffer_replace(&h->ps.pps_list[i], h1->ps.pps_list[i]);
333  if (ret < 0)
334  return ret;
335  }
336 
337  ret = av_buffer_replace(&h->ps.pps_ref, h1->ps.pps_ref);
338  if (ret < 0)
339  return ret;
340  h->ps.pps = NULL;
341  h->ps.sps = NULL;
342  if (h1->ps.pps_ref) {
343  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
344  h->ps.sps = h->ps.pps->sps;
345  }
346 
347  if (need_reinit || !inited) {
348  h->width = h1->width;
349  h->height = h1->height;
350  h->mb_height = h1->mb_height;
351  h->mb_width = h1->mb_width;
352  h->mb_num = h1->mb_num;
353  h->mb_stride = h1->mb_stride;
354  h->b_stride = h1->b_stride;
355  h->x264_build = h1->x264_build;
356 
357  if (h->context_initialized || h1->context_initialized) {
358  if ((err = h264_slice_header_init(h)) < 0) {
359  av_log(h->avctx, AV_LOG_ERROR, "h264_slice_header_init() failed");
360  return err;
361  }
362  }
363 
364  /* copy block_offset since frame_start may not be called */
365  memcpy(h->block_offset, h1->block_offset, sizeof(h->block_offset));
366  }
367 
368  h->avctx->coded_height = h1->avctx->coded_height;
369  h->avctx->coded_width = h1->avctx->coded_width;
370  h->avctx->width = h1->avctx->width;
371  h->avctx->height = h1->avctx->height;
372  h->width_from_caller = h1->width_from_caller;
373  h->height_from_caller = h1->height_from_caller;
374  h->coded_picture_number = h1->coded_picture_number;
375  h->first_field = h1->first_field;
376  h->picture_structure = h1->picture_structure;
377  h->mb_aff_frame = h1->mb_aff_frame;
378  h->droppable = h1->droppable;
379 
380  for (i = 0; i < H264_MAX_PICTURE_COUNT; i++) {
381  ff_h264_unref_picture(h, &h->DPB[i]);
382  if (h1->DPB[i].f->buf[0] &&
383  (ret = ff_h264_ref_picture(h, &h->DPB[i], &h1->DPB[i])) < 0)
384  return ret;
385  }
386 
387  h->cur_pic_ptr = REBASE_PICTURE(h1->cur_pic_ptr, h, h1);
388  ff_h264_unref_picture(h, &h->cur_pic);
389  if (h1->cur_pic.f->buf[0]) {
390  ret = ff_h264_ref_picture(h, &h->cur_pic, &h1->cur_pic);
391  if (ret < 0)
392  return ret;
393  }
394 
395  h->enable_er = h1->enable_er;
396  h->workaround_bugs = h1->workaround_bugs;
397  h->droppable = h1->droppable;
398 
399  // extradata/NAL handling
400  h->is_avc = h1->is_avc;
401  h->nal_length_size = h1->nal_length_size;
402 
403  memcpy(&h->poc, &h1->poc, sizeof(h->poc));
404 
405  memcpy(h->short_ref, h1->short_ref, sizeof(h->short_ref));
406  memcpy(h->long_ref, h1->long_ref, sizeof(h->long_ref));
407  memcpy(h->delayed_pic, h1->delayed_pic, sizeof(h->delayed_pic));
408  memcpy(h->last_pocs, h1->last_pocs, sizeof(h->last_pocs));
409 
410  h->next_output_pic = h1->next_output_pic;
411  h->next_outputed_poc = h1->next_outputed_poc;
412 
413  memcpy(h->mmco, h1->mmco, sizeof(h->mmco));
414  h->nb_mmco = h1->nb_mmco;
415  h->mmco_reset = h1->mmco_reset;
416  h->explicit_ref_marking = h1->explicit_ref_marking;
417  h->long_ref_count = h1->long_ref_count;
418  h->short_ref_count = h1->short_ref_count;
419 
420  copy_picture_range(h->short_ref, h1->short_ref, 32, h, h1);
421  copy_picture_range(h->long_ref, h1->long_ref, 32, h, h1);
422  copy_picture_range(h->delayed_pic, h1->delayed_pic,
423  MAX_DELAYED_PIC_COUNT + 2, h, h1);
424 
425  h->frame_recovered = h1->frame_recovered;
426 
427  ret = av_buffer_replace(&h->sei.a53_caption.buf_ref, h1->sei.a53_caption.buf_ref);
428  if (ret < 0)
429  return ret;
430 
431  for (i = 0; i < h->sei.unregistered.nb_buf_ref; i++)
432  av_buffer_unref(&h->sei.unregistered.buf_ref[i]);
433  h->sei.unregistered.nb_buf_ref = 0;
434 
435  if (h1->sei.unregistered.nb_buf_ref) {
436  ret = av_reallocp_array(&h->sei.unregistered.buf_ref,
437  h1->sei.unregistered.nb_buf_ref,
438  sizeof(*h->sei.unregistered.buf_ref));
439  if (ret < 0)
440  return ret;
441 
442  for (i = 0; i < h1->sei.unregistered.nb_buf_ref; i++) {
443  h->sei.unregistered.buf_ref[i] = av_buffer_ref(h1->sei.unregistered.buf_ref[i]);
444  if (!h->sei.unregistered.buf_ref[i])
445  return AVERROR(ENOMEM);
446  h->sei.unregistered.nb_buf_ref++;
447  }
448  }
449  h->sei.unregistered.x264_build = h1->sei.unregistered.x264_build;
450 
451  if (!h->cur_pic_ptr)
452  return 0;
453 
454  if (!h->droppable) {
456  h->poc.prev_poc_msb = h->poc.poc_msb;
457  h->poc.prev_poc_lsb = h->poc.poc_lsb;
458  }
459  h->poc.prev_frame_num_offset = h->poc.frame_num_offset;
460  h->poc.prev_frame_num = h->poc.frame_num;
461 
462  h->recovery_frame = h1->recovery_frame;
463 
464  return err;
465 }
466 
468 {
469  H264Picture *pic;
470  int i, ret;
471  const int pixel_shift = h->pixel_shift;
472 
473  if (!ff_thread_can_start_frame(h->avctx)) {
474  av_log(h->avctx, AV_LOG_ERROR, "Attempt to start a frame outside SETUP state\n");
475  return -1;
476  }
477 
479  h->cur_pic_ptr = NULL;
480 
482  if (i < 0) {
483  av_log(h->avctx, AV_LOG_ERROR, "no frame buffer available\n");
484  return i;
485  }
486  pic = &h->DPB[i];
487 
488  pic->reference = h->droppable ? 0 : h->picture_structure;
489  pic->f->coded_picture_number = h->coded_picture_number++;
490  pic->field_picture = h->picture_structure != PICT_FRAME;
491  pic->frame_num = h->poc.frame_num;
492  /*
493  * Zero key_frame here; IDR markings per slice in frame or fields are ORed
494  * in later.
495  * See decode_nal_units().
496  */
497  pic->f->key_frame = 0;
498  pic->mmco_reset = 0;
499  pic->recovered = 0;
500  pic->invalid_gap = 0;
501  pic->sei_recovery_frame_cnt = h->sei.recovery_point.recovery_frame_cnt;
502 
503  pic->f->pict_type = h->slice_ctx[0].slice_type;
504 
505  pic->f->crop_left = h->crop_left;
506  pic->f->crop_right = h->crop_right;
507  pic->f->crop_top = h->crop_top;
508  pic->f->crop_bottom = h->crop_bottom;
509 
510  if ((ret = alloc_picture(h, pic)) < 0)
511  return ret;
512 
513  h->cur_pic_ptr = pic;
514  ff_h264_unref_picture(h, &h->cur_pic);
516  ff_h264_set_erpic(&h->slice_ctx[0].er.cur_pic, NULL);
517  }
518 
519  if ((ret = ff_h264_ref_picture(h, &h->cur_pic, h->cur_pic_ptr)) < 0)
520  return ret;
521 
522  for (i = 0; i < h->nb_slice_ctx; i++) {
523  h->slice_ctx[i].linesize = h->cur_pic_ptr->f->linesize[0];
524  h->slice_ctx[i].uvlinesize = h->cur_pic_ptr->f->linesize[1];
525  }
526 
527  if (CONFIG_ERROR_RESILIENCE && h->enable_er) {
528  ff_er_frame_start(&h->slice_ctx[0].er);
529  ff_h264_set_erpic(&h->slice_ctx[0].er.last_pic, NULL);
530  ff_h264_set_erpic(&h->slice_ctx[0].er.next_pic, NULL);
531  }
532 
533  for (i = 0; i < 16; i++) {
534  h->block_offset[i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
535  h->block_offset[48 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[0] * ((scan8[i] - scan8[0]) >> 3);
536  }
537  for (i = 0; i < 16; i++) {
538  h->block_offset[16 + i] =
539  h->block_offset[32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 4 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
540  h->block_offset[48 + 16 + i] =
541  h->block_offset[48 + 32 + i] = (4 * ((scan8[i] - scan8[0]) & 7) << pixel_shift) + 8 * pic->f->linesize[1] * ((scan8[i] - scan8[0]) >> 3);
542  }
543 
544  /* We mark the current picture as non-reference after allocating it, so
545  * that if we break out due to an error it can be released automatically
546  * in the next ff_mpv_frame_start().
547  */
548  h->cur_pic_ptr->reference = 0;
549 
550  h->cur_pic_ptr->field_poc[0] = h->cur_pic_ptr->field_poc[1] = INT_MAX;
551 
552  h->next_output_pic = NULL;
553 
554  h->postpone_filter = 0;
555 
556  h->mb_aff_frame = h->ps.sps->mb_aff && (h->picture_structure == PICT_FRAME);
557 
558  if (h->sei.unregistered.x264_build >= 0)
559  h->x264_build = h->sei.unregistered.x264_build;
560 
561  assert(h->cur_pic_ptr->long_ref == 0);
562 
563  return 0;
564 }
565 
567  uint8_t *src_y,
568  uint8_t *src_cb, uint8_t *src_cr,
569  int linesize, int uvlinesize,
570  int simple)
571 {
572  uint8_t *top_border;
573  int top_idx = 1;
574  const int pixel_shift = h->pixel_shift;
575  int chroma444 = CHROMA444(h);
576  int chroma422 = CHROMA422(h);
577 
578  src_y -= linesize;
579  src_cb -= uvlinesize;
580  src_cr -= uvlinesize;
581 
582  if (!simple && FRAME_MBAFF(h)) {
583  if (sl->mb_y & 1) {
584  if (!MB_MBAFF(sl)) {
585  top_border = sl->top_borders[0][sl->mb_x];
586  AV_COPY128(top_border, src_y + 15 * linesize);
587  if (pixel_shift)
588  AV_COPY128(top_border + 16, src_y + 15 * linesize + 16);
589  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
590  if (chroma444) {
591  if (pixel_shift) {
592  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
593  AV_COPY128(top_border + 48, src_cb + 15 * uvlinesize + 16);
594  AV_COPY128(top_border + 64, src_cr + 15 * uvlinesize);
595  AV_COPY128(top_border + 80, src_cr + 15 * uvlinesize + 16);
596  } else {
597  AV_COPY128(top_border + 16, src_cb + 15 * uvlinesize);
598  AV_COPY128(top_border + 32, src_cr + 15 * uvlinesize);
599  }
600  } else if (chroma422) {
601  if (pixel_shift) {
602  AV_COPY128(top_border + 32, src_cb + 15 * uvlinesize);
603  AV_COPY128(top_border + 48, src_cr + 15 * uvlinesize);
604  } else {
605  AV_COPY64(top_border + 16, src_cb + 15 * uvlinesize);
606  AV_COPY64(top_border + 24, src_cr + 15 * uvlinesize);
607  }
608  } else {
609  if (pixel_shift) {
610  AV_COPY128(top_border + 32, src_cb + 7 * uvlinesize);
611  AV_COPY128(top_border + 48, src_cr + 7 * uvlinesize);
612  } else {
613  AV_COPY64(top_border + 16, src_cb + 7 * uvlinesize);
614  AV_COPY64(top_border + 24, src_cr + 7 * uvlinesize);
615  }
616  }
617  }
618  }
619  } else if (MB_MBAFF(sl)) {
620  top_idx = 0;
621  } else
622  return;
623  }
624 
625  top_border = sl->top_borders[top_idx][sl->mb_x];
626  /* There are two lines saved, the line above the top macroblock
627  * of a pair, and the line above the bottom macroblock. */
628  AV_COPY128(top_border, src_y + 16 * linesize);
629  if (pixel_shift)
630  AV_COPY128(top_border + 16, src_y + 16 * linesize + 16);
631 
632  if (simple || !CONFIG_GRAY || !(h->flags & AV_CODEC_FLAG_GRAY)) {
633  if (chroma444) {
634  if (pixel_shift) {
635  AV_COPY128(top_border + 32, src_cb + 16 * linesize);
636  AV_COPY128(top_border + 48, src_cb + 16 * linesize + 16);
637  AV_COPY128(top_border + 64, src_cr + 16 * linesize);
638  AV_COPY128(top_border + 80, src_cr + 16 * linesize + 16);
639  } else {
640  AV_COPY128(top_border + 16, src_cb + 16 * linesize);
641  AV_COPY128(top_border + 32, src_cr + 16 * linesize);
642  }
643  } else if (chroma422) {
644  if (pixel_shift) {
645  AV_COPY128(top_border + 32, src_cb + 16 * uvlinesize);
646  AV_COPY128(top_border + 48, src_cr + 16 * uvlinesize);
647  } else {
648  AV_COPY64(top_border + 16, src_cb + 16 * uvlinesize);
649  AV_COPY64(top_border + 24, src_cr + 16 * uvlinesize);
650  }
651  } else {
652  if (pixel_shift) {
653  AV_COPY128(top_border + 32, src_cb + 8 * uvlinesize);
654  AV_COPY128(top_border + 48, src_cr + 8 * uvlinesize);
655  } else {
656  AV_COPY64(top_border + 16, src_cb + 8 * uvlinesize);
657  AV_COPY64(top_border + 24, src_cr + 8 * uvlinesize);
658  }
659  }
660  }
661 }
662 
663 /**
664  * Initialize implicit_weight table.
665  * @param field 0/1 initialize the weight for interlaced MBAFF
666  * -1 initializes the rest
667  */
668 static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
669 {
670  int ref0, ref1, i, cur_poc, ref_start, ref_count0, ref_count1;
671 
672  for (i = 0; i < 2; i++) {
673  sl->pwt.luma_weight_flag[i] = 0;
674  sl->pwt.chroma_weight_flag[i] = 0;
675  }
676 
677  if (field < 0) {
678  if (h->picture_structure == PICT_FRAME) {
679  cur_poc = h->cur_pic_ptr->poc;
680  } else {
681  cur_poc = h->cur_pic_ptr->field_poc[h->picture_structure - 1];
682  }
683  if (sl->ref_count[0] == 1 && sl->ref_count[1] == 1 && !FRAME_MBAFF(h) &&
684  sl->ref_list[0][0].poc + (int64_t)sl->ref_list[1][0].poc == 2LL * cur_poc) {
685  sl->pwt.use_weight = 0;
686  sl->pwt.use_weight_chroma = 0;
687  return;
688  }
689  ref_start = 0;
690  ref_count0 = sl->ref_count[0];
691  ref_count1 = sl->ref_count[1];
692  } else {
693  cur_poc = h->cur_pic_ptr->field_poc[field];
694  ref_start = 16;
695  ref_count0 = 16 + 2 * sl->ref_count[0];
696  ref_count1 = 16 + 2 * sl->ref_count[1];
697  }
698 
699  sl->pwt.use_weight = 2;
700  sl->pwt.use_weight_chroma = 2;
701  sl->pwt.luma_log2_weight_denom = 5;
703 
704  for (ref0 = ref_start; ref0 < ref_count0; ref0++) {
705  int64_t poc0 = sl->ref_list[0][ref0].poc;
706  for (ref1 = ref_start; ref1 < ref_count1; ref1++) {
707  int w = 32;
708  if (!sl->ref_list[0][ref0].parent->long_ref && !sl->ref_list[1][ref1].parent->long_ref) {
709  int poc1 = sl->ref_list[1][ref1].poc;
710  int td = av_clip_int8(poc1 - poc0);
711  if (td) {
712  int tb = av_clip_int8(cur_poc - poc0);
713  int tx = (16384 + (FFABS(td) >> 1)) / td;
714  int dist_scale_factor = (tb * tx + 32) >> 8;
715  if (dist_scale_factor >= -64 && dist_scale_factor <= 128)
716  w = 64 - dist_scale_factor;
717  }
718  }
719  if (field < 0) {
720  sl->pwt.implicit_weight[ref0][ref1][0] =
721  sl->pwt.implicit_weight[ref0][ref1][1] = w;
722  } else {
723  sl->pwt.implicit_weight[ref0][ref1][field] = w;
724  }
725  }
726  }
727 }
728 
729 /**
730  * initialize scan tables
731  */
733 {
734  int i;
735  for (i = 0; i < 16; i++) {
736 #define TRANSPOSE(x) ((x) >> 2) | (((x) << 2) & 0xF)
737  h->zigzag_scan[i] = TRANSPOSE(ff_zigzag_scan[i]);
738  h->field_scan[i] = TRANSPOSE(field_scan[i]);
739 #undef TRANSPOSE
740  }
741  for (i = 0; i < 64; i++) {
742 #define TRANSPOSE(x) ((x) >> 3) | (((x) & 7) << 3)
743  h->zigzag_scan8x8[i] = TRANSPOSE(ff_zigzag_direct[i]);
744  h->zigzag_scan8x8_cavlc[i] = TRANSPOSE(zigzag_scan8x8_cavlc[i]);
745  h->field_scan8x8[i] = TRANSPOSE(field_scan8x8[i]);
746  h->field_scan8x8_cavlc[i] = TRANSPOSE(field_scan8x8_cavlc[i]);
747 #undef TRANSPOSE
748  }
749  if (h->ps.sps->transform_bypass) { // FIXME same ugly
750  memcpy(h->zigzag_scan_q0 , ff_zigzag_scan , sizeof(h->zigzag_scan_q0 ));
751  memcpy(h->zigzag_scan8x8_q0 , ff_zigzag_direct , sizeof(h->zigzag_scan8x8_q0 ));
752  memcpy(h->zigzag_scan8x8_cavlc_q0 , zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
753  memcpy(h->field_scan_q0 , field_scan , sizeof(h->field_scan_q0 ));
754  memcpy(h->field_scan8x8_q0 , field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
755  memcpy(h->field_scan8x8_cavlc_q0 , field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
756  } else {
757  memcpy(h->zigzag_scan_q0 , h->zigzag_scan , sizeof(h->zigzag_scan_q0 ));
758  memcpy(h->zigzag_scan8x8_q0 , h->zigzag_scan8x8 , sizeof(h->zigzag_scan8x8_q0 ));
759  memcpy(h->zigzag_scan8x8_cavlc_q0 , h->zigzag_scan8x8_cavlc , sizeof(h->zigzag_scan8x8_cavlc_q0));
760  memcpy(h->field_scan_q0 , h->field_scan , sizeof(h->field_scan_q0 ));
761  memcpy(h->field_scan8x8_q0 , h->field_scan8x8 , sizeof(h->field_scan8x8_q0 ));
762  memcpy(h->field_scan8x8_cavlc_q0 , h->field_scan8x8_cavlc , sizeof(h->field_scan8x8_cavlc_q0 ));
763  }
764 }
765 
766 static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
767 {
768 #define HWACCEL_MAX (CONFIG_H264_DXVA2_HWACCEL + \
769  (CONFIG_H264_D3D11VA_HWACCEL * 2) + \
770  CONFIG_H264_NVDEC_HWACCEL + \
771  CONFIG_H264_VAAPI_HWACCEL + \
772  CONFIG_H264_VIDEOTOOLBOX_HWACCEL + \
773  CONFIG_H264_VDPAU_HWACCEL)
774  enum AVPixelFormat pix_fmts[HWACCEL_MAX + 2], *fmt = pix_fmts;
775  const enum AVPixelFormat *choices = pix_fmts;
776  int i;
777 
778  switch (h->ps.sps->bit_depth_luma) {
779  case 9:
780  if (CHROMA444(h)) {
781  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
782  *fmt++ = AV_PIX_FMT_GBRP9;
783  } else
784  *fmt++ = AV_PIX_FMT_YUV444P9;
785  } else if (CHROMA422(h))
786  *fmt++ = AV_PIX_FMT_YUV422P9;
787  else
788  *fmt++ = AV_PIX_FMT_YUV420P9;
789  break;
790  case 10:
791  if (CHROMA444(h)) {
792  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
793  *fmt++ = AV_PIX_FMT_GBRP10;
794  } else
795  *fmt++ = AV_PIX_FMT_YUV444P10;
796  } else if (CHROMA422(h))
797  *fmt++ = AV_PIX_FMT_YUV422P10;
798  else
799  *fmt++ = AV_PIX_FMT_YUV420P10;
800  break;
801  case 12:
802  if (CHROMA444(h)) {
803  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
804  *fmt++ = AV_PIX_FMT_GBRP12;
805  } else
806  *fmt++ = AV_PIX_FMT_YUV444P12;
807  } else if (CHROMA422(h))
808  *fmt++ = AV_PIX_FMT_YUV422P12;
809  else
810  *fmt++ = AV_PIX_FMT_YUV420P12;
811  break;
812  case 14:
813  if (CHROMA444(h)) {
814  if (h->avctx->colorspace == AVCOL_SPC_RGB) {
815  *fmt++ = AV_PIX_FMT_GBRP14;
816  } else
817  *fmt++ = AV_PIX_FMT_YUV444P14;
818  } else if (CHROMA422(h))
819  *fmt++ = AV_PIX_FMT_YUV422P14;
820  else
821  *fmt++ = AV_PIX_FMT_YUV420P14;
822  break;
823  case 8:
824 #if CONFIG_H264_VDPAU_HWACCEL
825  *fmt++ = AV_PIX_FMT_VDPAU;
826 #endif
827 #if CONFIG_H264_NVDEC_HWACCEL
828  *fmt++ = AV_PIX_FMT_CUDA;
829 #endif
830  if (CHROMA444(h)) {
831  if (h->avctx->colorspace == AVCOL_SPC_RGB)
832  *fmt++ = AV_PIX_FMT_GBRP;
833  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
834  *fmt++ = AV_PIX_FMT_YUVJ444P;
835  else
836  *fmt++ = AV_PIX_FMT_YUV444P;
837  } else if (CHROMA422(h)) {
838  if (h->avctx->color_range == AVCOL_RANGE_JPEG)
839  *fmt++ = AV_PIX_FMT_YUVJ422P;
840  else
841  *fmt++ = AV_PIX_FMT_YUV422P;
842  } else {
843 #if CONFIG_H264_DXVA2_HWACCEL
844  *fmt++ = AV_PIX_FMT_DXVA2_VLD;
845 #endif
846 #if CONFIG_H264_D3D11VA_HWACCEL
847  *fmt++ = AV_PIX_FMT_D3D11VA_VLD;
848  *fmt++ = AV_PIX_FMT_D3D11;
849 #endif
850 #if CONFIG_H264_VAAPI_HWACCEL
851  *fmt++ = AV_PIX_FMT_VAAPI;
852 #endif
853 #if CONFIG_H264_VIDEOTOOLBOX_HWACCEL
854  *fmt++ = AV_PIX_FMT_VIDEOTOOLBOX;
855 #endif
856  if (h->avctx->codec->pix_fmts)
857  choices = h->avctx->codec->pix_fmts;
858  else if (h->avctx->color_range == AVCOL_RANGE_JPEG)
859  *fmt++ = AV_PIX_FMT_YUVJ420P;
860  else
861  *fmt++ = AV_PIX_FMT_YUV420P;
862  }
863  break;
864  default:
865  av_log(h->avctx, AV_LOG_ERROR,
866  "Unsupported bit depth %d\n", h->ps.sps->bit_depth_luma);
867  return AVERROR_INVALIDDATA;
868  }
869 
870  *fmt = AV_PIX_FMT_NONE;
871 
872  for (i=0; choices[i] != AV_PIX_FMT_NONE; i++)
873  if (choices[i] == h->avctx->pix_fmt && !force_callback)
874  return choices[i];
875  return ff_thread_get_format(h->avctx, choices);
876 }
877 
878 /* export coded and cropped frame dimensions to AVCodecContext */
880 {
881  const SPS *sps = (const SPS*)h->ps.sps;
882  int cr = sps->crop_right;
883  int cl = sps->crop_left;
884  int ct = sps->crop_top;
885  int cb = sps->crop_bottom;
886  int width = h->width - (cr + cl);
887  int height = h->height - (ct + cb);
888  av_assert0(sps->crop_right + sps->crop_left < (unsigned)h->width);
889  av_assert0(sps->crop_top + sps->crop_bottom < (unsigned)h->height);
890 
891  /* handle container cropping */
892  if (h->width_from_caller > 0 && h->height_from_caller > 0 &&
893  !sps->crop_top && !sps->crop_left &&
894  FFALIGN(h->width_from_caller, 16) == FFALIGN(width, 16) &&
895  FFALIGN(h->height_from_caller, 16) == FFALIGN(height, 16) &&
896  h->width_from_caller <= width &&
897  h->height_from_caller <= height) {
898  width = h->width_from_caller;
899  height = h->height_from_caller;
900  cl = 0;
901  ct = 0;
902  cr = h->width - width;
903  cb = h->height - height;
904  } else {
905  h->width_from_caller = 0;
906  h->height_from_caller = 0;
907  }
908 
909  h->avctx->coded_width = h->width;
910  h->avctx->coded_height = h->height;
911  h->avctx->width = width;
912  h->avctx->height = height;
913  h->crop_right = cr;
914  h->crop_left = cl;
915  h->crop_top = ct;
916  h->crop_bottom = cb;
917 }
918 
920 {
921  const SPS *sps = h->ps.sps;
922  int i, ret;
923 
924  if (!sps) {
925  ret = AVERROR_INVALIDDATA;
926  goto fail;
927  }
928 
929  ff_set_sar(h->avctx, sps->sar);
930  av_pix_fmt_get_chroma_sub_sample(h->avctx->pix_fmt,
931  &h->chroma_x_shift, &h->chroma_y_shift);
932 
933  if (sps->timing_info_present_flag) {
934  int64_t den = sps->time_scale;
935  if (h->x264_build < 44U)
936  den *= 2;
937  av_reduce(&h->avctx->framerate.den, &h->avctx->framerate.num,
938  sps->num_units_in_tick * h->avctx->ticks_per_frame, den, 1 << 30);
939  }
940 
942 
943  h->first_field = 0;
944  h->prev_interlaced_frame = 1;
945 
947  ret = ff_h264_alloc_tables(h);
948  if (ret < 0) {
949  av_log(h->avctx, AV_LOG_ERROR, "Could not allocate memory\n");
950  goto fail;
951  }
952 
953  if (sps->bit_depth_luma < 8 || sps->bit_depth_luma > 14 ||
954  sps->bit_depth_luma == 11 || sps->bit_depth_luma == 13
955  ) {
956  av_log(h->avctx, AV_LOG_ERROR, "Unsupported bit depth %d\n",
957  sps->bit_depth_luma);
958  ret = AVERROR_INVALIDDATA;
959  goto fail;
960  }
961 
962  h->cur_bit_depth_luma =
963  h->avctx->bits_per_raw_sample = sps->bit_depth_luma;
964  h->cur_chroma_format_idc = sps->chroma_format_idc;
965  h->pixel_shift = sps->bit_depth_luma > 8;
966  h->chroma_format_idc = sps->chroma_format_idc;
967  h->bit_depth_luma = sps->bit_depth_luma;
968 
969  ff_h264dsp_init(&h->h264dsp, sps->bit_depth_luma,
970  sps->chroma_format_idc);
971  ff_h264chroma_init(&h->h264chroma, sps->bit_depth_chroma);
972  ff_h264qpel_init(&h->h264qpel, sps->bit_depth_luma);
973  ff_h264_pred_init(&h->hpc, h->avctx->codec_id, sps->bit_depth_luma,
974  sps->chroma_format_idc);
975  ff_videodsp_init(&h->vdsp, sps->bit_depth_luma);
976 
977  if (!HAVE_THREADS || !(h->avctx->active_thread_type & FF_THREAD_SLICE)) {
978  ret = ff_h264_slice_context_init(h, &h->slice_ctx[0]);
979  if (ret < 0) {
980  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
981  goto fail;
982  }
983  } else {
984  for (i = 0; i < h->nb_slice_ctx; i++) {
985  H264SliceContext *sl = &h->slice_ctx[i];
986 
987  sl->h264 = h;
988  sl->intra4x4_pred_mode = h->intra4x4_pred_mode + i * 8 * 2 * h->mb_stride;
989  sl->mvd_table[0] = h->mvd_table[0] + i * 8 * 2 * h->mb_stride;
990  sl->mvd_table[1] = h->mvd_table[1] + i * 8 * 2 * h->mb_stride;
991 
992  if ((ret = ff_h264_slice_context_init(h, sl)) < 0) {
993  av_log(h->avctx, AV_LOG_ERROR, "context_init() failed.\n");
994  goto fail;
995  }
996  }
997  }
998 
999  h->context_initialized = 1;
1000 
1001  return 0;
1002 fail:
1004  h->context_initialized = 0;
1005  return ret;
1006 }
1007 
1008 static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a)
1009 {
1010  switch (a) {
1014  default:
1015  return a;
1016  }
1017 }
1018 
1019 static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
1020 {
1021  const SPS *sps;
1022  int needs_reinit = 0, must_reinit, ret;
1023 
1024  if (first_slice) {
1025  av_buffer_unref(&h->ps.pps_ref);
1026  h->ps.pps = NULL;
1027  h->ps.pps_ref = av_buffer_ref(h->ps.pps_list[sl->pps_id]);
1028  if (!h->ps.pps_ref)
1029  return AVERROR(ENOMEM);
1030  h->ps.pps = (const PPS*)h->ps.pps_ref->data;
1031  }
1032 
1033  if (h->ps.sps != h->ps.pps->sps) {
1034  h->ps.sps = (const SPS*)h->ps.pps->sps;
1035 
1036  if (h->mb_width != h->ps.sps->mb_width ||
1037  h->mb_height != h->ps.sps->mb_height ||
1038  h->cur_bit_depth_luma != h->ps.sps->bit_depth_luma ||
1039  h->cur_chroma_format_idc != h->ps.sps->chroma_format_idc
1040  )
1041  needs_reinit = 1;
1042 
1043  if (h->bit_depth_luma != h->ps.sps->bit_depth_luma ||
1044  h->chroma_format_idc != h->ps.sps->chroma_format_idc)
1045  needs_reinit = 1;
1046  }
1047  sps = h->ps.sps;
1048 
1049  must_reinit = (h->context_initialized &&
1050  ( 16*sps->mb_width != h->avctx->coded_width
1051  || 16*sps->mb_height != h->avctx->coded_height
1052  || h->cur_bit_depth_luma != sps->bit_depth_luma
1053  || h->cur_chroma_format_idc != sps->chroma_format_idc
1054  || h->mb_width != sps->mb_width
1055  || h->mb_height != sps->mb_height
1056  ));
1057  if (h->avctx->pix_fmt == AV_PIX_FMT_NONE
1058  || (non_j_pixfmt(h->avctx->pix_fmt) != non_j_pixfmt(get_pixel_format(h, 0))))
1059  must_reinit = 1;
1060 
1061  if (first_slice && av_cmp_q(sps->sar, h->avctx->sample_aspect_ratio))
1062  must_reinit = 1;
1063 
1064  if (!h->setup_finished) {
1065  h->avctx->profile = ff_h264_get_profile(sps);
1066  h->avctx->level = sps->level_idc;
1067  h->avctx->refs = sps->ref_frame_count;
1068 
1069  h->mb_width = sps->mb_width;
1070  h->mb_height = sps->mb_height;
1071  h->mb_num = h->mb_width * h->mb_height;
1072  h->mb_stride = h->mb_width + 1;
1073 
1074  h->b_stride = h->mb_width * 4;
1075 
1076  h->chroma_y_shift = sps->chroma_format_idc <= 1; // 400 uses yuv420p
1077 
1078  h->width = 16 * h->mb_width;
1079  h->height = 16 * h->mb_height;
1080 
1081  init_dimensions(h);
1082 
1083  if (sps->video_signal_type_present_flag) {
1084  h->avctx->color_range = sps->full_range > 0 ? AVCOL_RANGE_JPEG
1085  : AVCOL_RANGE_MPEG;
1086  if (sps->colour_description_present_flag) {
1087  if (h->avctx->colorspace != sps->colorspace)
1088  needs_reinit = 1;
1089  h->avctx->color_primaries = sps->color_primaries;
1090  h->avctx->color_trc = sps->color_trc;
1091  h->avctx->colorspace = sps->colorspace;
1092  }
1093  }
1094 
1095  if (h->sei.alternative_transfer.present &&
1096  av_color_transfer_name(h->sei.alternative_transfer.preferred_transfer_characteristics) &&
1097  h->sei.alternative_transfer.preferred_transfer_characteristics != AVCOL_TRC_UNSPECIFIED) {
1098  h->avctx->color_trc = h->sei.alternative_transfer.preferred_transfer_characteristics;
1099  }
1100  }
1101  h->avctx->chroma_sample_location = sps->chroma_location;
1102 
1103  if (!h->context_initialized || must_reinit || needs_reinit) {
1104  int flush_changes = h->context_initialized;
1105  h->context_initialized = 0;
1106  if (sl != h->slice_ctx) {
1107  av_log(h->avctx, AV_LOG_ERROR,
1108  "changing width %d -> %d / height %d -> %d on "
1109  "slice %d\n",
1110  h->width, h->avctx->coded_width,
1111  h->height, h->avctx->coded_height,
1112  h->current_slice + 1);
1113  return AVERROR_INVALIDDATA;
1114  }
1115 
1116  av_assert1(first_slice);
1117 
1118  if (flush_changes)
1120 
1121  if ((ret = get_pixel_format(h, 1)) < 0)
1122  return ret;
1123  h->avctx->pix_fmt = ret;
1124 
1125  av_log(h->avctx, AV_LOG_VERBOSE, "Reinit context to %dx%d, "
1126  "pix_fmt: %s\n", h->width, h->height, av_get_pix_fmt_name(h->avctx->pix_fmt));
1127 
1128  if ((ret = h264_slice_header_init(h)) < 0) {
1129  av_log(h->avctx, AV_LOG_ERROR,
1130  "h264_slice_header_init() failed\n");
1131  return ret;
1132  }
1133  }
1134 
1135  return 0;
1136 }
1137 
1139 {
1140  const SPS *sps = h->ps.sps;
1141  H264Picture *cur = h->cur_pic_ptr;
1142  AVFrame *out = cur->f;
1143 
1144  out->interlaced_frame = 0;
1145  out->repeat_pict = 0;
1146 
1147  /* Signal interlacing information externally. */
1148  /* Prioritize picture timing SEI information over used
1149  * decoding process if it exists. */
1150  if (h->sei.picture_timing.present) {
1151  int ret = ff_h264_sei_process_picture_timing(&h->sei.picture_timing, sps,
1152  h->avctx);
1153  if (ret < 0) {
1154  av_log(h->avctx, AV_LOG_ERROR, "Error processing a picture timing SEI\n");
1155  if (h->avctx->err_recognition & AV_EF_EXPLODE)
1156  return ret;
1157  h->sei.picture_timing.present = 0;
1158  }
1159  }
1160 
1161  if (sps->pic_struct_present_flag && h->sei.picture_timing.present) {
1162  H264SEIPictureTiming *pt = &h->sei.picture_timing;
1163  switch (pt->pic_struct) {
1165  break;
1168  out->interlaced_frame = 1;
1169  break;
1173  out->interlaced_frame = 1;
1174  else
1175  // try to flag soft telecine progressive
1176  out->interlaced_frame = h->prev_interlaced_frame;
1177  break;
1180  /* Signal the possibility of telecined film externally
1181  * (pic_struct 5,6). From these hints, let the applications
1182  * decide if they apply deinterlacing. */
1183  out->repeat_pict = 1;
1184  break;
1186  out->repeat_pict = 2;
1187  break;
1189  out->repeat_pict = 4;
1190  break;
1191  }
1192 
1193  if ((pt->ct_type & 3) &&
1194  pt->pic_struct <= H264_SEI_PIC_STRUCT_BOTTOM_TOP)
1195  out->interlaced_frame = (pt->ct_type & (1 << 1)) != 0;
1196  } else {
1197  /* Derive interlacing flag from used decoding process. */
1198  out->interlaced_frame = FIELD_OR_MBAFF_PICTURE(h);
1199  }
1200  h->prev_interlaced_frame = out->interlaced_frame;
1201 
1202  if (cur->field_poc[0] != cur->field_poc[1]) {
1203  /* Derive top_field_first from field pocs. */
1204  out->top_field_first = cur->field_poc[0] < cur->field_poc[1];
1205  } else {
1206  if (sps->pic_struct_present_flag && h->sei.picture_timing.present) {
1207  /* Use picture timing SEI information. Even if it is a
1208  * information of a past frame, better than nothing. */
1209  if (h->sei.picture_timing.pic_struct == H264_SEI_PIC_STRUCT_TOP_BOTTOM ||
1210  h->sei.picture_timing.pic_struct == H264_SEI_PIC_STRUCT_TOP_BOTTOM_TOP)
1211  out->top_field_first = 1;
1212  else
1213  out->top_field_first = 0;
1214  } else if (out->interlaced_frame) {
1215  /* Default to top field first when pic_struct_present_flag
1216  * is not set but interlaced frame detected */
1217  out->top_field_first = 1;
1218  } else {
1219  /* Most likely progressive */
1220  out->top_field_first = 0;
1221  }
1222  }
1223 
1224  if (h->sei.frame_packing.present &&
1225  h->sei.frame_packing.arrangement_type <= 6 &&
1226  h->sei.frame_packing.content_interpretation_type > 0 &&
1227  h->sei.frame_packing.content_interpretation_type < 3) {
1228  H264SEIFramePacking *fp = &h->sei.frame_packing;
1230  if (stereo) {
1231  switch (fp->arrangement_type) {
1233  stereo->type = AV_STEREO3D_CHECKERBOARD;
1234  break;
1236  stereo->type = AV_STEREO3D_COLUMNS;
1237  break;
1239  stereo->type = AV_STEREO3D_LINES;
1240  break;
1242  if (fp->quincunx_sampling_flag)
1244  else
1245  stereo->type = AV_STEREO3D_SIDEBYSIDE;
1246  break;
1248  stereo->type = AV_STEREO3D_TOPBOTTOM;
1249  break;
1251  stereo->type = AV_STEREO3D_FRAMESEQUENCE;
1252  break;
1253  case H264_SEI_FPA_TYPE_2D:
1254  stereo->type = AV_STEREO3D_2D;
1255  break;
1256  }
1257 
1258  if (fp->content_interpretation_type == 2)
1259  stereo->flags = AV_STEREO3D_FLAG_INVERT;
1260 
1261  if (fp->arrangement_type == H264_SEI_FPA_TYPE_INTERLEAVE_TEMPORAL) {
1262  if (fp->current_frame_is_frame0_flag)
1263  stereo->view = AV_STEREO3D_VIEW_LEFT;
1264  else
1265  stereo->view = AV_STEREO3D_VIEW_RIGHT;
1266  }
1267  }
1268  }
1269 
1270  if (h->sei.display_orientation.present &&
1271  (h->sei.display_orientation.anticlockwise_rotation ||
1272  h->sei.display_orientation.hflip ||
1273  h->sei.display_orientation.vflip)) {
1274  H264SEIDisplayOrientation *o = &h->sei.display_orientation;
1275  double angle = o->anticlockwise_rotation * 360 / (double) (1 << 16);
1278  sizeof(int32_t) * 9);
1279  if (rotation) {
1280  av_display_rotation_set((int32_t *)rotation->data, angle);
1281  av_display_matrix_flip((int32_t *)rotation->data,
1282  o->hflip, o->vflip);
1283  }
1284  }
1285 
1286  if (h->sei.afd.present) {
1288  sizeof(uint8_t));
1289 
1290  if (sd) {
1291  *sd->data = h->sei.afd.active_format_description;
1292  h->sei.afd.present = 0;
1293  }
1294  }
1295 
1296  if (h->sei.a53_caption.buf_ref) {
1297  H264SEIA53Caption *a53 = &h->sei.a53_caption;
1298 
1300  if (!sd)
1301  av_buffer_unref(&a53->buf_ref);
1302  a53->buf_ref = NULL;
1303 
1304  h->avctx->properties |= FF_CODEC_PROPERTY_CLOSED_CAPTIONS;
1305  }
1306 
1307  for (int i = 0; i < h->sei.unregistered.nb_buf_ref; i++) {
1308  H264SEIUnregistered *unreg = &h->sei.unregistered;
1309 
1310  if (unreg->buf_ref[i]) {
1313  unreg->buf_ref[i]);
1314  if (!sd)
1315  av_buffer_unref(&unreg->buf_ref[i]);
1316  unreg->buf_ref[i] = NULL;
1317  }
1318  }
1319  h->sei.unregistered.nb_buf_ref = 0;
1320 
1321  if (h->sei.picture_timing.timecode_cnt > 0) {
1322  uint32_t *tc_sd;
1323  char tcbuf[AV_TIMECODE_STR_SIZE];
1324 
1327  sizeof(uint32_t)*4);
1328  if (!tcside)
1329  return AVERROR(ENOMEM);
1330 
1331  tc_sd = (uint32_t*)tcside->data;
1332  tc_sd[0] = h->sei.picture_timing.timecode_cnt;
1333 
1334  for (int i = 0; i < tc_sd[0]; i++) {
1335  int drop = h->sei.picture_timing.timecode[i].dropframe;
1336  int hh = h->sei.picture_timing.timecode[i].hours;
1337  int mm = h->sei.picture_timing.timecode[i].minutes;
1338  int ss = h->sei.picture_timing.timecode[i].seconds;
1339  int ff = h->sei.picture_timing.timecode[i].frame;
1340 
1341  tc_sd[i + 1] = av_timecode_get_smpte(h->avctx->framerate, drop, hh, mm, ss, ff);
1342  av_timecode_make_smpte_tc_string2(tcbuf, h->avctx->framerate, tc_sd[i + 1], 0, 0);
1343  av_dict_set(&out->metadata, "timecode", tcbuf, 0);
1344  }
1345  h->sei.picture_timing.timecode_cnt = 0;
1346  }
1347 
1348  return 0;
1349 }
1350 
1352 {
1353  const SPS *sps = h->ps.sps;
1354  H264Picture *out = h->cur_pic_ptr;
1355  H264Picture *cur = h->cur_pic_ptr;
1356  int i, pics, out_of_order, out_idx;
1357 
1358  cur->mmco_reset = h->mmco_reset;
1359  h->mmco_reset = 0;
1360 
1361  if (sps->bitstream_restriction_flag ||
1362  h->avctx->strict_std_compliance >= FF_COMPLIANCE_STRICT) {
1363  h->avctx->has_b_frames = FFMAX(h->avctx->has_b_frames, sps->num_reorder_frames);
1364  }
1365 
1366  for (i = 0; 1; i++) {
1367  if(i == MAX_DELAYED_PIC_COUNT || cur->poc < h->last_pocs[i]){
1368  if(i)
1369  h->last_pocs[i-1] = cur->poc;
1370  break;
1371  } else if(i) {
1372  h->last_pocs[i-1]= h->last_pocs[i];
1373  }
1374  }
1375  out_of_order = MAX_DELAYED_PIC_COUNT - i;
1376  if( cur->f->pict_type == AV_PICTURE_TYPE_B
1377  || (h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > INT_MIN && h->last_pocs[MAX_DELAYED_PIC_COUNT-1] - (int64_t)h->last_pocs[MAX_DELAYED_PIC_COUNT-2] > 2))
1378  out_of_order = FFMAX(out_of_order, 1);
1379  if (out_of_order == MAX_DELAYED_PIC_COUNT) {
1380  av_log(h->avctx, AV_LOG_VERBOSE, "Invalid POC %d<%d\n", cur->poc, h->last_pocs[0]);
1381  for (i = 1; i < MAX_DELAYED_PIC_COUNT; i++)
1382  h->last_pocs[i] = INT_MIN;
1383  h->last_pocs[0] = cur->poc;
1384  cur->mmco_reset = 1;
1385  } else if(h->avctx->has_b_frames < out_of_order && !sps->bitstream_restriction_flag){
1386  int loglevel = h->avctx->frame_number > 1 ? AV_LOG_WARNING : AV_LOG_VERBOSE;
1387  av_log(h->avctx, loglevel, "Increasing reorder buffer to %d\n", out_of_order);
1388  h->avctx->has_b_frames = out_of_order;
1389  }
1390 
1391  pics = 0;
1392  while (h->delayed_pic[pics])
1393  pics++;
1394 
1396 
1397  h->delayed_pic[pics++] = cur;
1398  if (cur->reference == 0)
1399  cur->reference = DELAYED_PIC_REF;
1400 
1401  out = h->delayed_pic[0];
1402  out_idx = 0;
1403  for (i = 1; h->delayed_pic[i] &&
1404  !h->delayed_pic[i]->f->key_frame &&
1405  !h->delayed_pic[i]->mmco_reset;
1406  i++)
1407  if (h->delayed_pic[i]->poc < out->poc) {
1408  out = h->delayed_pic[i];
1409  out_idx = i;
1410  }
1411  if (h->avctx->has_b_frames == 0 &&
1412  (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset))
1413  h->next_outputed_poc = INT_MIN;
1414  out_of_order = out->poc < h->next_outputed_poc;
1415 
1416  if (out_of_order || pics > h->avctx->has_b_frames) {
1417  out->reference &= ~DELAYED_PIC_REF;
1418  for (i = out_idx; h->delayed_pic[i]; i++)
1419  h->delayed_pic[i] = h->delayed_pic[i + 1];
1420  }
1421  if (!out_of_order && pics > h->avctx->has_b_frames) {
1422  h->next_output_pic = out;
1423  if (out_idx == 0 && h->delayed_pic[0] && (h->delayed_pic[0]->f->key_frame || h->delayed_pic[0]->mmco_reset)) {
1424  h->next_outputed_poc = INT_MIN;
1425  } else
1426  h->next_outputed_poc = out->poc;
1427 
1428  if (out->recovered) {
1429  // We have reached an recovery point and all frames after it in
1430  // display order are "recovered".
1431  h->frame_recovered |= FRAME_RECOVERED_SEI;
1432  }
1433  out->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_SEI);
1434 
1435  if (!out->recovered) {
1436  if (!(h->avctx->flags & AV_CODEC_FLAG_OUTPUT_CORRUPT) &&
1437  !(h->avctx->flags2 & AV_CODEC_FLAG2_SHOW_ALL)) {
1438  h->next_output_pic = NULL;
1439  } else {
1440  out->f->flags |= AV_FRAME_FLAG_CORRUPT;
1441  }
1442  }
1443  } else {
1444  av_log(h->avctx, AV_LOG_DEBUG, "no picture %s\n", out_of_order ? "ooo" : "");
1445  }
1446 
1447  return 0;
1448 }
1449 
1450 /* This function is called right after decoding the slice header for a first
1451  * slice in a field (or a frame). It decides whether we are decoding a new frame
1452  * or a second field in a pair and does the necessary setup.
1453  */
1455  const H2645NAL *nal, int first_slice)
1456 {
1457  int i;
1458  const SPS *sps;
1459 
1460  int last_pic_structure, last_pic_droppable, ret;
1461 
1462  ret = h264_init_ps(h, sl, first_slice);
1463  if (ret < 0)
1464  return ret;
1465 
1466  sps = h->ps.sps;
1467 
1468  if (sps && sps->bitstream_restriction_flag &&
1469  h->avctx->has_b_frames < sps->num_reorder_frames) {
1470  h->avctx->has_b_frames = sps->num_reorder_frames;
1471  }
1472 
1473  last_pic_droppable = h->droppable;
1474  last_pic_structure = h->picture_structure;
1475  h->droppable = (nal->ref_idc == 0);
1476  h->picture_structure = sl->picture_structure;
1477 
1478  h->poc.frame_num = sl->frame_num;
1479  h->poc.poc_lsb = sl->poc_lsb;
1480  h->poc.delta_poc_bottom = sl->delta_poc_bottom;
1481  h->poc.delta_poc[0] = sl->delta_poc[0];
1482  h->poc.delta_poc[1] = sl->delta_poc[1];
1483 
1484  /* Shorten frame num gaps so we don't have to allocate reference
1485  * frames just to throw them away */
1486  if (h->poc.frame_num != h->poc.prev_frame_num) {
1487  int unwrap_prev_frame_num = h->poc.prev_frame_num;
1488  int max_frame_num = 1 << sps->log2_max_frame_num;
1489 
1490  if (unwrap_prev_frame_num > h->poc.frame_num)
1491  unwrap_prev_frame_num -= max_frame_num;
1492 
1493  if ((h->poc.frame_num - unwrap_prev_frame_num) > sps->ref_frame_count) {
1494  unwrap_prev_frame_num = (h->poc.frame_num - sps->ref_frame_count) - 1;
1495  if (unwrap_prev_frame_num < 0)
1496  unwrap_prev_frame_num += max_frame_num;
1497 
1498  h->poc.prev_frame_num = unwrap_prev_frame_num;
1499  }
1500  }
1501 
1502  /* See if we have a decoded first field looking for a pair...
1503  * Here, we're using that to see if we should mark previously
1504  * decode frames as "finished".
1505  * We have to do that before the "dummy" in-between frame allocation,
1506  * since that can modify h->cur_pic_ptr. */
1507  if (h->first_field) {
1508  int last_field = last_pic_structure == PICT_BOTTOM_FIELD;
1509  av_assert0(h->cur_pic_ptr);
1510  av_assert0(h->cur_pic_ptr->f->buf[0]);
1511  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1512 
1513  /* Mark old field/frame as completed */
1514  if (h->cur_pic_ptr->tf.owner[last_field] == h->avctx) {
1515  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, last_field);
1516  }
1517 
1518  /* figure out if we have a complementary field pair */
1519  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1520  /* Previous field is unmatched. Don't display it, but let it
1521  * remain for reference if marked as such. */
1522  if (last_pic_structure != PICT_FRAME) {
1523  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
1524  last_pic_structure == PICT_TOP_FIELD);
1525  }
1526  } else {
1527  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1528  /* This and previous field were reference, but had
1529  * different frame_nums. Consider this field first in
1530  * pair. Throw away previous field except for reference
1531  * purposes. */
1532  if (last_pic_structure != PICT_FRAME) {
1533  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
1534  last_pic_structure == PICT_TOP_FIELD);
1535  }
1536  } else {
1537  /* Second field in complementary pair */
1538  if (!((last_pic_structure == PICT_TOP_FIELD &&
1539  h->picture_structure == PICT_BOTTOM_FIELD) ||
1540  (last_pic_structure == PICT_BOTTOM_FIELD &&
1541  h->picture_structure == PICT_TOP_FIELD))) {
1542  av_log(h->avctx, AV_LOG_ERROR,
1543  "Invalid field mode combination %d/%d\n",
1544  last_pic_structure, h->picture_structure);
1545  h->picture_structure = last_pic_structure;
1546  h->droppable = last_pic_droppable;
1547  return AVERROR_INVALIDDATA;
1548  } else if (last_pic_droppable != h->droppable) {
1549  avpriv_request_sample(h->avctx,
1550  "Found reference and non-reference fields in the same frame, which");
1551  h->picture_structure = last_pic_structure;
1552  h->droppable = last_pic_droppable;
1553  return AVERROR_PATCHWELCOME;
1554  }
1555  }
1556  }
1557  }
1558 
1559  while (h->poc.frame_num != h->poc.prev_frame_num && !h->first_field &&
1560  h->poc.frame_num != (h->poc.prev_frame_num + 1) % (1 << sps->log2_max_frame_num)) {
1561  H264Picture *prev = h->short_ref_count ? h->short_ref[0] : NULL;
1562  av_log(h->avctx, AV_LOG_DEBUG, "Frame num gap %d %d\n",
1563  h->poc.frame_num, h->poc.prev_frame_num);
1564  if (!sps->gaps_in_frame_num_allowed_flag)
1565  for(i=0; i<FF_ARRAY_ELEMS(h->last_pocs); i++)
1566  h->last_pocs[i] = INT_MIN;
1567  ret = h264_frame_start(h);
1568  if (ret < 0) {
1569  h->first_field = 0;
1570  return ret;
1571  }
1572 
1573  h->poc.prev_frame_num++;
1574  h->poc.prev_frame_num %= 1 << sps->log2_max_frame_num;
1575  h->cur_pic_ptr->frame_num = h->poc.prev_frame_num;
1576  h->cur_pic_ptr->invalid_gap = !sps->gaps_in_frame_num_allowed_flag;
1577  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
1578  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
1579 
1580  h->explicit_ref_marking = 0;
1582  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1583  return ret;
1584  /* Error concealment: If a ref is missing, copy the previous ref
1585  * in its place.
1586  * FIXME: Avoiding a memcpy would be nice, but ref handling makes
1587  * many assumptions about there being no actual duplicates.
1588  * FIXME: This does not copy padding for out-of-frame motion
1589  * vectors. Given we are concealing a lost frame, this probably
1590  * is not noticeable by comparison, but it should be fixed. */
1591  if (h->short_ref_count) {
1592  int c[4] = {
1593  1<<(h->ps.sps->bit_depth_luma-1),
1594  1<<(h->ps.sps->bit_depth_chroma-1),
1595  1<<(h->ps.sps->bit_depth_chroma-1),
1596  -1
1597  };
1598 
1599  if (prev &&
1600  h->short_ref[0]->f->width == prev->f->width &&
1601  h->short_ref[0]->f->height == prev->f->height &&
1602  h->short_ref[0]->f->format == prev->f->format) {
1603  ff_thread_await_progress(&prev->tf, INT_MAX, 0);
1604  if (prev->field_picture)
1605  ff_thread_await_progress(&prev->tf, INT_MAX, 1);
1606  ff_thread_release_buffer(h->avctx, &h->short_ref[0]->tf);
1607  h->short_ref[0]->tf.f = h->short_ref[0]->f;
1608  ret = ff_thread_ref_frame(&h->short_ref[0]->tf, &prev->tf);
1609  if (ret < 0)
1610  return ret;
1611  h->short_ref[0]->poc = prev->poc + 2U;
1612  ff_thread_report_progress(&h->short_ref[0]->tf, INT_MAX, 0);
1613  if (h->short_ref[0]->field_picture)
1614  ff_thread_report_progress(&h->short_ref[0]->tf, INT_MAX, 1);
1615  } else if (!h->frame_recovered && !h->avctx->hwaccel)
1616  ff_color_frame(h->short_ref[0]->f, c);
1617  h->short_ref[0]->frame_num = h->poc.prev_frame_num;
1618  }
1619  }
1620 
1621  /* See if we have a decoded first field looking for a pair...
1622  * We're using that to see whether to continue decoding in that
1623  * frame, or to allocate a new one. */
1624  if (h->first_field) {
1625  av_assert0(h->cur_pic_ptr);
1626  av_assert0(h->cur_pic_ptr->f->buf[0]);
1627  assert(h->cur_pic_ptr->reference != DELAYED_PIC_REF);
1628 
1629  /* figure out if we have a complementary field pair */
1630  if (!FIELD_PICTURE(h) || h->picture_structure == last_pic_structure) {
1631  /* Previous field is unmatched. Don't display it, but let it
1632  * remain for reference if marked as such. */
1633  h->missing_fields ++;
1634  h->cur_pic_ptr = NULL;
1635  h->first_field = FIELD_PICTURE(h);
1636  } else {
1637  h->missing_fields = 0;
1638  if (h->cur_pic_ptr->frame_num != h->poc.frame_num) {
1639  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
1640  h->picture_structure==PICT_BOTTOM_FIELD);
1641  /* This and the previous field had different frame_nums.
1642  * Consider this field first in pair. Throw away previous
1643  * one except for reference purposes. */
1644  h->first_field = 1;
1645  h->cur_pic_ptr = NULL;
1646  } else if (h->cur_pic_ptr->reference & DELAYED_PIC_REF) {
1647  /* This frame was already output, we cannot draw into it
1648  * anymore.
1649  */
1650  h->first_field = 1;
1651  h->cur_pic_ptr = NULL;
1652  } else {
1653  /* Second field in complementary pair */
1654  h->first_field = 0;
1655  }
1656  }
1657  } else {
1658  /* Frame or first field in a potentially complementary pair */
1659  h->first_field = FIELD_PICTURE(h);
1660  }
1661 
1662  if (!FIELD_PICTURE(h) || h->first_field) {
1663  if (h264_frame_start(h) < 0) {
1664  h->first_field = 0;
1665  return AVERROR_INVALIDDATA;
1666  }
1667  } else {
1668  int field = h->picture_structure == PICT_BOTTOM_FIELD;
1670  h->cur_pic_ptr->tf.owner[field] = h->avctx;
1671  }
1672  /* Some macroblocks can be accessed before they're available in case
1673  * of lost slices, MBAFF or threading. */
1674  if (FIELD_PICTURE(h)) {
1675  for(i = (h->picture_structure == PICT_BOTTOM_FIELD); i<h->mb_height; i++)
1676  memset(h->slice_table + i*h->mb_stride, -1, (h->mb_stride - (i+1==h->mb_height)) * sizeof(*h->slice_table));
1677  } else {
1678  memset(h->slice_table, -1,
1679  (h->mb_height * h->mb_stride - 1) * sizeof(*h->slice_table));
1680  }
1681 
1682  ret = ff_h264_init_poc(h->cur_pic_ptr->field_poc, &h->cur_pic_ptr->poc,
1683  h->ps.sps, &h->poc, h->picture_structure, nal->ref_idc);
1684  if (ret < 0)
1685  return ret;
1686 
1687  memcpy(h->mmco, sl->mmco, sl->nb_mmco * sizeof(*h->mmco));
1688  h->nb_mmco = sl->nb_mmco;
1689  h->explicit_ref_marking = sl->explicit_ref_marking;
1690 
1691  h->picture_idr = nal->type == H264_NAL_IDR_SLICE;
1692 
1693  if (h->sei.recovery_point.recovery_frame_cnt >= 0) {
1694  const int sei_recovery_frame_cnt = h->sei.recovery_point.recovery_frame_cnt;
1695 
1696  if (h->poc.frame_num != sei_recovery_frame_cnt || sl->slice_type_nos != AV_PICTURE_TYPE_I)
1697  h->valid_recovery_point = 1;
1698 
1699  if ( h->recovery_frame < 0
1700  || av_mod_uintp2(h->recovery_frame - h->poc.frame_num, h->ps.sps->log2_max_frame_num) > sei_recovery_frame_cnt) {
1701  h->recovery_frame = av_mod_uintp2(h->poc.frame_num + sei_recovery_frame_cnt, h->ps.sps->log2_max_frame_num);
1702 
1703  if (!h->valid_recovery_point)
1704  h->recovery_frame = h->poc.frame_num;
1705  }
1706  }
1707 
1708  h->cur_pic_ptr->f->key_frame |= (nal->type == H264_NAL_IDR_SLICE);
1709 
1710  if (nal->type == H264_NAL_IDR_SLICE ||
1711  (h->recovery_frame == h->poc.frame_num && nal->ref_idc)) {
1712  h->recovery_frame = -1;
1713  h->cur_pic_ptr->recovered = 1;
1714  }
1715  // If we have an IDR, all frames after it in decoded order are
1716  // "recovered".
1717  if (nal->type == H264_NAL_IDR_SLICE)
1718  h->frame_recovered |= FRAME_RECOVERED_IDR;
1719 #if 1
1720  h->cur_pic_ptr->recovered |= h->frame_recovered;
1721 #else
1722  h->cur_pic_ptr->recovered |= !!(h->frame_recovered & FRAME_RECOVERED_IDR);
1723 #endif
1724 
1725  /* Set the frame properties/side data. Only done for the second field in
1726  * field coded frames, since some SEI information is present for each field
1727  * and is merged by the SEI parsing code. */
1728  if (!FIELD_PICTURE(h) || !h->first_field || h->missing_fields > 1) {
1729  ret = h264_export_frame_props(h);
1730  if (ret < 0)
1731  return ret;
1732 
1733  ret = h264_select_output_frame(h);
1734  if (ret < 0)
1735  return ret;
1736  }
1737 
1738  return 0;
1739 }
1740 
1742  const H2645NAL *nal)
1743 {
1744  const SPS *sps;
1745  const PPS *pps;
1746  int ret;
1747  unsigned int slice_type, tmp, i;
1748  int field_pic_flag, bottom_field_flag;
1749  int first_slice = sl == h->slice_ctx && !h->current_slice;
1750  int picture_structure;
1751 
1752  if (first_slice)
1753  av_assert0(!h->setup_finished);
1754 
1755  sl->first_mb_addr = get_ue_golomb_long(&sl->gb);
1756 
1757  slice_type = get_ue_golomb_31(&sl->gb);
1758  if (slice_type > 9) {
1759  av_log(h->avctx, AV_LOG_ERROR,
1760  "slice type %d too large at %d\n",
1761  slice_type, sl->first_mb_addr);
1762  return AVERROR_INVALIDDATA;
1763  }
1764  if (slice_type > 4) {
1765  slice_type -= 5;
1766  sl->slice_type_fixed = 1;
1767  } else
1768  sl->slice_type_fixed = 0;
1769 
1770  slice_type = ff_h264_golomb_to_pict_type[slice_type];
1771  sl->slice_type = slice_type;
1772  sl->slice_type_nos = slice_type & 3;
1773 
1774  if (nal->type == H264_NAL_IDR_SLICE &&
1776  av_log(h->avctx, AV_LOG_ERROR, "A non-intra slice in an IDR NAL unit.\n");
1777  return AVERROR_INVALIDDATA;
1778  }
1779 
1780  sl->pps_id = get_ue_golomb(&sl->gb);
1781  if (sl->pps_id >= MAX_PPS_COUNT) {
1782  av_log(h->avctx, AV_LOG_ERROR, "pps_id %u out of range\n", sl->pps_id);
1783  return AVERROR_INVALIDDATA;
1784  }
1785  if (!h->ps.pps_list[sl->pps_id]) {
1786  av_log(h->avctx, AV_LOG_ERROR,
1787  "non-existing PPS %u referenced\n",
1788  sl->pps_id);
1789  return AVERROR_INVALIDDATA;
1790  }
1791  pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
1792  sps = pps->sps;
1793 
1794  sl->frame_num = get_bits(&sl->gb, sps->log2_max_frame_num);
1795  if (!first_slice) {
1796  if (h->poc.frame_num != sl->frame_num) {
1797  av_log(h->avctx, AV_LOG_ERROR, "Frame num change from %d to %d\n",
1798  h->poc.frame_num, sl->frame_num);
1799  return AVERROR_INVALIDDATA;
1800  }
1801  }
1802 
1803  sl->mb_mbaff = 0;
1804 
1805  if (sps->frame_mbs_only_flag) {
1806  picture_structure = PICT_FRAME;
1807  } else {
1808  if (!sps->direct_8x8_inference_flag && slice_type == AV_PICTURE_TYPE_B) {
1809  av_log(h->avctx, AV_LOG_ERROR, "This stream was generated by a broken encoder, invalid 8x8 inference\n");
1810  return -1;
1811  }
1812  field_pic_flag = get_bits1(&sl->gb);
1813  if (field_pic_flag) {
1814  bottom_field_flag = get_bits1(&sl->gb);
1815  picture_structure = PICT_TOP_FIELD + bottom_field_flag;
1816  } else {
1817  picture_structure = PICT_FRAME;
1818  }
1819  }
1820  sl->picture_structure = picture_structure;
1821  sl->mb_field_decoding_flag = picture_structure != PICT_FRAME;
1822 
1823  if (picture_structure == PICT_FRAME) {
1824  sl->curr_pic_num = sl->frame_num;
1825  sl->max_pic_num = 1 << sps->log2_max_frame_num;
1826  } else {
1827  sl->curr_pic_num = 2 * sl->frame_num + 1;
1828  sl->max_pic_num = 1 << (sps->log2_max_frame_num + 1);
1829  }
1830 
1831  if (nal->type == H264_NAL_IDR_SLICE)
1832  get_ue_golomb_long(&sl->gb); /* idr_pic_id */
1833 
1834  sl->poc_lsb = 0;
1835  sl->delta_poc_bottom = 0;
1836  if (sps->poc_type == 0) {
1837  sl->poc_lsb = get_bits(&sl->gb, sps->log2_max_poc_lsb);
1838 
1839  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1840  sl->delta_poc_bottom = get_se_golomb(&sl->gb);
1841  }
1842 
1843  sl->delta_poc[0] = sl->delta_poc[1] = 0;
1844  if (sps->poc_type == 1 && !sps->delta_pic_order_always_zero_flag) {
1845  sl->delta_poc[0] = get_se_golomb(&sl->gb);
1846 
1847  if (pps->pic_order_present == 1 && picture_structure == PICT_FRAME)
1848  sl->delta_poc[1] = get_se_golomb(&sl->gb);
1849  }
1850 
1851  sl->redundant_pic_count = 0;
1852  if (pps->redundant_pic_cnt_present)
1853  sl->redundant_pic_count = get_ue_golomb(&sl->gb);
1854 
1855  if (sl->slice_type_nos == AV_PICTURE_TYPE_B)
1856  sl->direct_spatial_mv_pred = get_bits1(&sl->gb);
1857 
1859  &sl->gb, pps, sl->slice_type_nos,
1860  picture_structure, h->avctx);
1861  if (ret < 0)
1862  return ret;
1863 
1864  if (sl->slice_type_nos != AV_PICTURE_TYPE_I) {
1865  ret = ff_h264_decode_ref_pic_list_reordering(sl, h->avctx);
1866  if (ret < 0) {
1867  sl->ref_count[1] = sl->ref_count[0] = 0;
1868  return ret;
1869  }
1870  }
1871 
1872  sl->pwt.use_weight = 0;
1873  for (i = 0; i < 2; i++) {
1874  sl->pwt.luma_weight_flag[i] = 0;
1875  sl->pwt.chroma_weight_flag[i] = 0;
1876  }
1877  if ((pps->weighted_pred && sl->slice_type_nos == AV_PICTURE_TYPE_P) ||
1878  (pps->weighted_bipred_idc == 1 &&
1880  ret = ff_h264_pred_weight_table(&sl->gb, sps, sl->ref_count,
1881  sl->slice_type_nos, &sl->pwt,
1882  picture_structure, h->avctx);
1883  if (ret < 0)
1884  return ret;
1885  }
1886 
1887  sl->explicit_ref_marking = 0;
1888  if (nal->ref_idc) {
1889  ret = ff_h264_decode_ref_pic_marking(sl, &sl->gb, nal, h->avctx);
1890  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
1891  return AVERROR_INVALIDDATA;
1892  }
1893 
1894  if (sl->slice_type_nos != AV_PICTURE_TYPE_I && pps->cabac) {
1895  tmp = get_ue_golomb_31(&sl->gb);
1896  if (tmp > 2) {
1897  av_log(h->avctx, AV_LOG_ERROR, "cabac_init_idc %u overflow\n", tmp);
1898  return AVERROR_INVALIDDATA;
1899  }
1900  sl->cabac_init_idc = tmp;
1901  }
1902 
1903  sl->last_qscale_diff = 0;
1904  tmp = pps->init_qp + (unsigned)get_se_golomb(&sl->gb);
1905  if (tmp > 51 + 6 * (sps->bit_depth_luma - 8)) {
1906  av_log(h->avctx, AV_LOG_ERROR, "QP %u out of range\n", tmp);
1907  return AVERROR_INVALIDDATA;
1908  }
1909  sl->qscale = tmp;
1910  sl->chroma_qp[0] = get_chroma_qp(pps, 0, sl->qscale);
1911  sl->chroma_qp[1] = get_chroma_qp(pps, 1, sl->qscale);
1912  // FIXME qscale / qp ... stuff
1913  if (sl->slice_type == AV_PICTURE_TYPE_SP)
1914  get_bits1(&sl->gb); /* sp_for_switch_flag */
1915  if (sl->slice_type == AV_PICTURE_TYPE_SP ||
1917  get_se_golomb(&sl->gb); /* slice_qs_delta */
1918 
1919  sl->deblocking_filter = 1;
1920  sl->slice_alpha_c0_offset = 0;
1921  sl->slice_beta_offset = 0;
1922  if (pps->deblocking_filter_parameters_present) {
1923  tmp = get_ue_golomb_31(&sl->gb);
1924  if (tmp > 2) {
1925  av_log(h->avctx, AV_LOG_ERROR,
1926  "deblocking_filter_idc %u out of range\n", tmp);
1927  return AVERROR_INVALIDDATA;
1928  }
1929  sl->deblocking_filter = tmp;
1930  if (sl->deblocking_filter < 2)
1931  sl->deblocking_filter ^= 1; // 1<->0
1932 
1933  if (sl->deblocking_filter) {
1934  int slice_alpha_c0_offset_div2 = get_se_golomb(&sl->gb);
1935  int slice_beta_offset_div2 = get_se_golomb(&sl->gb);
1936  if (slice_alpha_c0_offset_div2 > 6 ||
1937  slice_alpha_c0_offset_div2 < -6 ||
1938  slice_beta_offset_div2 > 6 ||
1939  slice_beta_offset_div2 < -6) {
1940  av_log(h->avctx, AV_LOG_ERROR,
1941  "deblocking filter parameters %d %d out of range\n",
1942  slice_alpha_c0_offset_div2, slice_beta_offset_div2);
1943  return AVERROR_INVALIDDATA;
1944  }
1945  sl->slice_alpha_c0_offset = slice_alpha_c0_offset_div2 * 2;
1946  sl->slice_beta_offset = slice_beta_offset_div2 * 2;
1947  }
1948  }
1949 
1950  return 0;
1951 }
1952 
1953 /* do all the per-slice initialization needed before we can start decoding the
1954  * actual MBs */
1956  const H2645NAL *nal)
1957 {
1958  int i, j, ret = 0;
1959 
1960  if (h->picture_idr && nal->type != H264_NAL_IDR_SLICE) {
1961  av_log(h->avctx, AV_LOG_ERROR, "Invalid mix of IDR and non-IDR slices\n");
1962  return AVERROR_INVALIDDATA;
1963  }
1964 
1965  av_assert1(h->mb_num == h->mb_width * h->mb_height);
1966  if (sl->first_mb_addr << FIELD_OR_MBAFF_PICTURE(h) >= h->mb_num ||
1967  sl->first_mb_addr >= h->mb_num) {
1968  av_log(h->avctx, AV_LOG_ERROR, "first_mb_in_slice overflow\n");
1969  return AVERROR_INVALIDDATA;
1970  }
1971  sl->resync_mb_x = sl->mb_x = sl->first_mb_addr % h->mb_width;
1972  sl->resync_mb_y = sl->mb_y = (sl->first_mb_addr / h->mb_width) <<
1974  if (h->picture_structure == PICT_BOTTOM_FIELD)
1975  sl->resync_mb_y = sl->mb_y = sl->mb_y + 1;
1976  av_assert1(sl->mb_y < h->mb_height);
1977 
1978  ret = ff_h264_build_ref_list(h, sl);
1979  if (ret < 0)
1980  return ret;
1981 
1982  if (h->ps.pps->weighted_bipred_idc == 2 &&
1984  implicit_weight_table(h, sl, -1);
1985  if (FRAME_MBAFF(h)) {
1986  implicit_weight_table(h, sl, 0);
1987  implicit_weight_table(h, sl, 1);
1988  }
1989  }
1990 
1993  if (!h->setup_finished)
1995 
1996  if (h->avctx->skip_loop_filter >= AVDISCARD_ALL ||
1997  (h->avctx->skip_loop_filter >= AVDISCARD_NONKEY &&
1998  h->nal_unit_type != H264_NAL_IDR_SLICE) ||
1999  (h->avctx->skip_loop_filter >= AVDISCARD_NONINTRA &&
2001  (h->avctx->skip_loop_filter >= AVDISCARD_BIDIR &&
2003  (h->avctx->skip_loop_filter >= AVDISCARD_NONREF &&
2004  nal->ref_idc == 0))
2005  sl->deblocking_filter = 0;
2006 
2007  if (sl->deblocking_filter == 1 && h->nb_slice_ctx > 1) {
2008  if (h->avctx->flags2 & AV_CODEC_FLAG2_FAST) {
2009  /* Cheat slightly for speed:
2010  * Do not bother to deblock across slices. */
2011  sl->deblocking_filter = 2;
2012  } else {
2013  h->postpone_filter = 1;
2014  }
2015  }
2016  sl->qp_thresh = 15 -
2018  FFMAX3(0,
2019  h->ps.pps->chroma_qp_index_offset[0],
2020  h->ps.pps->chroma_qp_index_offset[1]) +
2021  6 * (h->ps.sps->bit_depth_luma - 8);
2022 
2023  sl->slice_num = ++h->current_slice;
2024 
2025  if (sl->slice_num)
2026  h->slice_row[(sl->slice_num-1)&(MAX_SLICES-1)]= sl->resync_mb_y;
2027  if ( h->slice_row[sl->slice_num&(MAX_SLICES-1)] + 3 >= sl->resync_mb_y
2028  && h->slice_row[sl->slice_num&(MAX_SLICES-1)] <= sl->resync_mb_y
2029  && sl->slice_num >= MAX_SLICES) {
2030  //in case of ASO this check needs to be updated depending on how we decide to assign slice numbers in this case
2031  av_log(h->avctx, AV_LOG_WARNING, "Possibly too many slices (%d >= %d), increase MAX_SLICES and recompile if there are artifacts\n", sl->slice_num, MAX_SLICES);
2032  }
2033 
2034  for (j = 0; j < 2; j++) {
2035  int id_list[16];
2036  int *ref2frm = h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][j];
2037  for (i = 0; i < 16; i++) {
2038  id_list[i] = 60;
2039  if (j < sl->list_count && i < sl->ref_count[j] &&
2040  sl->ref_list[j][i].parent->f->buf[0]) {
2041  int k;
2042  AVBuffer *buf = sl->ref_list[j][i].parent->f->buf[0]->buffer;
2043  for (k = 0; k < h->short_ref_count; k++)
2044  if (h->short_ref[k]->f->buf[0]->buffer == buf) {
2045  id_list[i] = k;
2046  break;
2047  }
2048  for (k = 0; k < h->long_ref_count; k++)
2049  if (h->long_ref[k] && h->long_ref[k]->f->buf[0]->buffer == buf) {
2050  id_list[i] = h->short_ref_count + k;
2051  break;
2052  }
2053  }
2054  }
2055 
2056  ref2frm[0] =
2057  ref2frm[1] = -1;
2058  for (i = 0; i < 16; i++)
2059  ref2frm[i + 2] = 4 * id_list[i] + (sl->ref_list[j][i].reference & 3);
2060  ref2frm[18 + 0] =
2061  ref2frm[18 + 1] = -1;
2062  for (i = 16; i < 48; i++)
2063  ref2frm[i + 4] = 4 * id_list[(i - 16) >> 1] +
2064  (sl->ref_list[j][i].reference & 3);
2065  }
2066 
2067  if (h->avctx->debug & FF_DEBUG_PICT_INFO) {
2068  av_log(h->avctx, AV_LOG_DEBUG,
2069  "slice:%d %s mb:%d %c%s%s frame:%d poc:%d/%d ref:%d/%d qp:%d loop:%d:%d:%d weight:%d%s %s\n",
2070  sl->slice_num,
2071  (h->picture_structure == PICT_FRAME ? "F" : h->picture_structure == PICT_TOP_FIELD ? "T" : "B"),
2072  sl->mb_y * h->mb_width + sl->mb_x,
2074  sl->slice_type_fixed ? " fix" : "",
2075  nal->type == H264_NAL_IDR_SLICE ? " IDR" : "",
2076  h->poc.frame_num,
2077  h->cur_pic_ptr->field_poc[0],
2078  h->cur_pic_ptr->field_poc[1],
2079  sl->ref_count[0], sl->ref_count[1],
2080  sl->qscale,
2081  sl->deblocking_filter,
2083  sl->pwt.use_weight,
2084  sl->pwt.use_weight == 1 && sl->pwt.use_weight_chroma ? "c" : "",
2085  sl->slice_type == AV_PICTURE_TYPE_B ? (sl->direct_spatial_mv_pred ? "SPAT" : "TEMP") : "");
2086  }
2087 
2088  return 0;
2089 }
2090 
2092 {
2093  H264SliceContext *sl = h->slice_ctx + h->nb_slice_ctx_queued;
2094  int first_slice = sl == h->slice_ctx && !h->current_slice;
2095  int ret;
2096 
2097  sl->gb = nal->gb;
2098 
2099  ret = h264_slice_header_parse(h, sl, nal);
2100  if (ret < 0)
2101  return ret;
2102 
2103  // discard redundant pictures
2104  if (sl->redundant_pic_count > 0) {
2105  sl->ref_count[0] = sl->ref_count[1] = 0;
2106  return 0;
2107  }
2108 
2109  if (sl->first_mb_addr == 0 || !h->current_slice) {
2110  if (h->setup_finished) {
2111  av_log(h->avctx, AV_LOG_ERROR, "Too many fields\n");
2112  return AVERROR_INVALIDDATA;
2113  }
2114  }
2115 
2116  if (sl->first_mb_addr == 0) { // FIXME better field boundary detection
2117  if (h->current_slice) {
2118  // this slice starts a new field
2119  // first decode any pending queued slices
2120  if (h->nb_slice_ctx_queued) {
2121  H264SliceContext tmp_ctx;
2122 
2124  if (ret < 0 && (h->avctx->err_recognition & AV_EF_EXPLODE))
2125  return ret;
2126 
2127  memcpy(&tmp_ctx, h->slice_ctx, sizeof(tmp_ctx));
2128  memcpy(h->slice_ctx, sl, sizeof(tmp_ctx));
2129  memcpy(sl, &tmp_ctx, sizeof(tmp_ctx));
2130  sl = h->slice_ctx;
2131  }
2132 
2133  if (h->cur_pic_ptr && FIELD_PICTURE(h) && h->first_field) {
2134  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2135  if (ret < 0)
2136  return ret;
2137  } else if (h->cur_pic_ptr && !FIELD_PICTURE(h) && !h->first_field && h->nal_unit_type == H264_NAL_IDR_SLICE) {
2138  av_log(h, AV_LOG_WARNING, "Broken frame packetizing\n");
2139  ret = ff_h264_field_end(h, h->slice_ctx, 1);
2140  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 0);
2141  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX, 1);
2142  h->cur_pic_ptr = NULL;
2143  if (ret < 0)
2144  return ret;
2145  } else
2146  return AVERROR_INVALIDDATA;
2147  }
2148 
2149  if (!h->first_field) {
2150  if (h->cur_pic_ptr && !h->droppable) {
2151  ff_thread_report_progress(&h->cur_pic_ptr->tf, INT_MAX,
2152  h->picture_structure == PICT_BOTTOM_FIELD);
2153  }
2154  h->cur_pic_ptr = NULL;
2155  }
2156  }
2157 
2158  if (!h->current_slice)
2159  av_assert0(sl == h->slice_ctx);
2160 
2161  if (h->current_slice == 0 && !h->first_field) {
2162  if (
2163  (h->avctx->skip_frame >= AVDISCARD_NONREF && !h->nal_ref_idc) ||
2164  (h->avctx->skip_frame >= AVDISCARD_BIDIR && sl->slice_type_nos == AV_PICTURE_TYPE_B) ||
2165  (h->avctx->skip_frame >= AVDISCARD_NONINTRA && sl->slice_type_nos != AV_PICTURE_TYPE_I) ||
2166  (h->avctx->skip_frame >= AVDISCARD_NONKEY && h->nal_unit_type != H264_NAL_IDR_SLICE && h->sei.recovery_point.recovery_frame_cnt < 0) ||
2167  h->avctx->skip_frame >= AVDISCARD_ALL) {
2168  return 0;
2169  }
2170  }
2171 
2172  if (!first_slice) {
2173  const PPS *pps = (const PPS*)h->ps.pps_list[sl->pps_id]->data;
2174 
2175  if (h->ps.pps->sps_id != pps->sps_id ||
2176  h->ps.pps->transform_8x8_mode != pps->transform_8x8_mode /*||
2177  (h->setup_finished && h->ps.pps != pps)*/) {
2178  av_log(h->avctx, AV_LOG_ERROR, "PPS changed between slices\n");
2179  return AVERROR_INVALIDDATA;
2180  }
2181  if (h->ps.sps != pps->sps) {
2182  av_log(h->avctx, AV_LOG_ERROR,
2183  "SPS changed in the middle of the frame\n");
2184  return AVERROR_INVALIDDATA;
2185  }
2186  }
2187 
2188  if (h->current_slice == 0) {
2189  ret = h264_field_start(h, sl, nal, first_slice);
2190  if (ret < 0)
2191  return ret;
2192  } else {
2193  if (h->picture_structure != sl->picture_structure ||
2194  h->droppable != (nal->ref_idc == 0)) {
2195  av_log(h->avctx, AV_LOG_ERROR,
2196  "Changing field mode (%d -> %d) between slices is not allowed\n",
2197  h->picture_structure, sl->picture_structure);
2198  return AVERROR_INVALIDDATA;
2199  } else if (!h->cur_pic_ptr) {
2200  av_log(h->avctx, AV_LOG_ERROR,
2201  "unset cur_pic_ptr on slice %d\n",
2202  h->current_slice + 1);
2203  return AVERROR_INVALIDDATA;
2204  }
2205  }
2206 
2207  ret = h264_slice_init(h, sl, nal);
2208  if (ret < 0)
2209  return ret;
2210 
2211  h->nb_slice_ctx_queued++;
2212 
2213  return 0;
2214 }
2215 
2217 {
2218  switch (sl->slice_type) {
2219  case AV_PICTURE_TYPE_P:
2220  return 0;
2221  case AV_PICTURE_TYPE_B:
2222  return 1;
2223  case AV_PICTURE_TYPE_I:
2224  return 2;
2225  case AV_PICTURE_TYPE_SP:
2226  return 3;
2227  case AV_PICTURE_TYPE_SI:
2228  return 4;
2229  default:
2230  return AVERROR_INVALIDDATA;
2231  }
2232 }
2233 
2235  H264SliceContext *sl,
2236  int mb_type, int top_xy,
2237  int left_xy[LEFT_MBS],
2238  int top_type,
2239  int left_type[LEFT_MBS],
2240  int mb_xy, int list)
2241 {
2242  int b_stride = h->b_stride;
2243  int16_t(*mv_dst)[2] = &sl->mv_cache[list][scan8[0]];
2244  int8_t *ref_cache = &sl->ref_cache[list][scan8[0]];
2245  if (IS_INTER(mb_type) || IS_DIRECT(mb_type)) {
2246  if (USES_LIST(top_type, list)) {
2247  const int b_xy = h->mb2b_xy[top_xy] + 3 * b_stride;
2248  const int b8_xy = 4 * top_xy + 2;
2249  const int *ref2frm = &h->ref2frm[h->slice_table[top_xy] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2250  AV_COPY128(mv_dst - 1 * 8, h->cur_pic.motion_val[list][b_xy + 0]);
2251  ref_cache[0 - 1 * 8] =
2252  ref_cache[1 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 0]];
2253  ref_cache[2 - 1 * 8] =
2254  ref_cache[3 - 1 * 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 1]];
2255  } else {
2256  AV_ZERO128(mv_dst - 1 * 8);
2257  AV_WN32A(&ref_cache[0 - 1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2258  }
2259 
2260  if (!IS_INTERLACED(mb_type ^ left_type[LTOP])) {
2261  if (USES_LIST(left_type[LTOP], list)) {
2262  const int b_xy = h->mb2b_xy[left_xy[LTOP]] + 3;
2263  const int b8_xy = 4 * left_xy[LTOP] + 1;
2264  const int *ref2frm = &h->ref2frm[h->slice_table[left_xy[LTOP]] & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2265  AV_COPY32(mv_dst - 1 + 0, h->cur_pic.motion_val[list][b_xy + b_stride * 0]);
2266  AV_COPY32(mv_dst - 1 + 8, h->cur_pic.motion_val[list][b_xy + b_stride * 1]);
2267  AV_COPY32(mv_dst - 1 + 16, h->cur_pic.motion_val[list][b_xy + b_stride * 2]);
2268  AV_COPY32(mv_dst - 1 + 24, h->cur_pic.motion_val[list][b_xy + b_stride * 3]);
2269  ref_cache[-1 + 0] =
2270  ref_cache[-1 + 8] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 0]];
2271  ref_cache[-1 + 16] =
2272  ref_cache[-1 + 24] = ref2frm[h->cur_pic.ref_index[list][b8_xy + 2 * 1]];
2273  } else {
2274  AV_ZERO32(mv_dst - 1 + 0);
2275  AV_ZERO32(mv_dst - 1 + 8);
2276  AV_ZERO32(mv_dst - 1 + 16);
2277  AV_ZERO32(mv_dst - 1 + 24);
2278  ref_cache[-1 + 0] =
2279  ref_cache[-1 + 8] =
2280  ref_cache[-1 + 16] =
2281  ref_cache[-1 + 24] = LIST_NOT_USED;
2282  }
2283  }
2284  }
2285 
2286  if (!USES_LIST(mb_type, list)) {
2287  fill_rectangle(mv_dst, 4, 4, 8, pack16to32(0, 0), 4);
2288  AV_WN32A(&ref_cache[0 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2289  AV_WN32A(&ref_cache[1 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2290  AV_WN32A(&ref_cache[2 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2291  AV_WN32A(&ref_cache[3 * 8], ((LIST_NOT_USED) & 0xFF) * 0x01010101u);
2292  return;
2293  }
2294 
2295  {
2296  int8_t *ref = &h->cur_pic.ref_index[list][4 * mb_xy];
2297  const int *ref2frm = &h->ref2frm[sl->slice_num & (MAX_SLICES - 1)][list][(MB_MBAFF(sl) ? 20 : 2)];
2298  uint32_t ref01 = (pack16to32(ref2frm[ref[0]], ref2frm[ref[1]]) & 0x00FF00FF) * 0x0101;
2299  uint32_t ref23 = (pack16to32(ref2frm[ref[2]], ref2frm[ref[3]]) & 0x00FF00FF) * 0x0101;
2300  AV_WN32A(&ref_cache[0 * 8], ref01);
2301  AV_WN32A(&ref_cache[1 * 8], ref01);
2302  AV_WN32A(&ref_cache[2 * 8], ref23);
2303  AV_WN32A(&ref_cache[3 * 8], ref23);
2304  }
2305 
2306  {
2307  int16_t(*mv_src)[2] = &h->cur_pic.motion_val[list][4 * sl->mb_x + 4 * sl->mb_y * b_stride];
2308  AV_COPY128(mv_dst + 8 * 0, mv_src + 0 * b_stride);
2309  AV_COPY128(mv_dst + 8 * 1, mv_src + 1 * b_stride);
2310  AV_COPY128(mv_dst + 8 * 2, mv_src + 2 * b_stride);
2311  AV_COPY128(mv_dst + 8 * 3, mv_src + 3 * b_stride);
2312  }
2313 }
2314 
2315 /**
2316  * @return non zero if the loop filter can be skipped
2317  */
2318 static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
2319 {
2320  const int mb_xy = sl->mb_xy;
2321  int top_xy, left_xy[LEFT_MBS];
2322  int top_type, left_type[LEFT_MBS];
2323  uint8_t *nnz;
2324  uint8_t *nnz_cache;
2325 
2326  top_xy = mb_xy - (h->mb_stride << MB_FIELD(sl));
2327 
2328  left_xy[LBOT] = left_xy[LTOP] = mb_xy - 1;
2329  if (FRAME_MBAFF(h)) {
2330  const int left_mb_field_flag = IS_INTERLACED(h->cur_pic.mb_type[mb_xy - 1]);
2331  const int curr_mb_field_flag = IS_INTERLACED(mb_type);
2332  if (sl->mb_y & 1) {
2333  if (left_mb_field_flag != curr_mb_field_flag)
2334  left_xy[LTOP] -= h->mb_stride;
2335  } else {
2336  if (curr_mb_field_flag)
2337  top_xy += h->mb_stride &
2338  (((h->cur_pic.mb_type[top_xy] >> 7) & 1) - 1);
2339  if (left_mb_field_flag != curr_mb_field_flag)
2340  left_xy[LBOT] += h->mb_stride;
2341  }
2342  }
2343 
2344  sl->top_mb_xy = top_xy;
2345  sl->left_mb_xy[LTOP] = left_xy[LTOP];
2346  sl->left_mb_xy[LBOT] = left_xy[LBOT];
2347  {
2348  /* For sufficiently low qp, filtering wouldn't do anything.
2349  * This is a conservative estimate: could also check beta_offset
2350  * and more accurate chroma_qp. */
2351  int qp_thresh = sl->qp_thresh; // FIXME strictly we should store qp_thresh for each mb of a slice
2352  int qp = h->cur_pic.qscale_table[mb_xy];
2353  if (qp <= qp_thresh &&
2354  (left_xy[LTOP] < 0 ||
2355  ((qp + h->cur_pic.qscale_table[left_xy[LTOP]] + 1) >> 1) <= qp_thresh) &&
2356  (top_xy < 0 ||
2357  ((qp + h->cur_pic.qscale_table[top_xy] + 1) >> 1) <= qp_thresh)) {
2358  if (!FRAME_MBAFF(h))
2359  return 1;
2360  if ((left_xy[LTOP] < 0 ||
2361  ((qp + h->cur_pic.qscale_table[left_xy[LBOT]] + 1) >> 1) <= qp_thresh) &&
2362  (top_xy < h->mb_stride ||
2363  ((qp + h->cur_pic.qscale_table[top_xy - h->mb_stride] + 1) >> 1) <= qp_thresh))
2364  return 1;
2365  }
2366  }
2367 
2368  top_type = h->cur_pic.mb_type[top_xy];
2369  left_type[LTOP] = h->cur_pic.mb_type[left_xy[LTOP]];
2370  left_type[LBOT] = h->cur_pic.mb_type[left_xy[LBOT]];
2371  if (sl->deblocking_filter == 2) {
2372  if (h->slice_table[top_xy] != sl->slice_num)
2373  top_type = 0;
2374  if (h->slice_table[left_xy[LBOT]] != sl->slice_num)
2375  left_type[LTOP] = left_type[LBOT] = 0;
2376  } else {
2377  if (h->slice_table[top_xy] == 0xFFFF)
2378  top_type = 0;
2379  if (h->slice_table[left_xy[LBOT]] == 0xFFFF)
2380  left_type[LTOP] = left_type[LBOT] = 0;
2381  }
2382  sl->top_type = top_type;
2383  sl->left_type[LTOP] = left_type[LTOP];
2384  sl->left_type[LBOT] = left_type[LBOT];
2385 
2386  if (IS_INTRA(mb_type))
2387  return 0;
2388 
2389  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2390  top_type, left_type, mb_xy, 0);
2391  if (sl->list_count == 2)
2392  fill_filter_caches_inter(h, sl, mb_type, top_xy, left_xy,
2393  top_type, left_type, mb_xy, 1);
2394 
2395  nnz = h->non_zero_count[mb_xy];
2396  nnz_cache = sl->non_zero_count_cache;
2397  AV_COPY32(&nnz_cache[4 + 8 * 1], &nnz[0]);
2398  AV_COPY32(&nnz_cache[4 + 8 * 2], &nnz[4]);
2399  AV_COPY32(&nnz_cache[4 + 8 * 3], &nnz[8]);
2400  AV_COPY32(&nnz_cache[4 + 8 * 4], &nnz[12]);
2401  sl->cbp = h->cbp_table[mb_xy];
2402 
2403  if (top_type) {
2404  nnz = h->non_zero_count[top_xy];
2405  AV_COPY32(&nnz_cache[4 + 8 * 0], &nnz[3 * 4]);
2406  }
2407 
2408  if (left_type[LTOP]) {
2409  nnz = h->non_zero_count[left_xy[LTOP]];
2410  nnz_cache[3 + 8 * 1] = nnz[3 + 0 * 4];
2411  nnz_cache[3 + 8 * 2] = nnz[3 + 1 * 4];
2412  nnz_cache[3 + 8 * 3] = nnz[3 + 2 * 4];
2413  nnz_cache[3 + 8 * 4] = nnz[3 + 3 * 4];
2414  }
2415 
2416  /* CAVLC 8x8dct requires NNZ values for residual decoding that differ
2417  * from what the loop filter needs */
2418  if (!CABAC(h) && h->ps.pps->transform_8x8_mode) {
2419  if (IS_8x8DCT(top_type)) {
2420  nnz_cache[4 + 8 * 0] =
2421  nnz_cache[5 + 8 * 0] = (h->cbp_table[top_xy] & 0x4000) >> 12;
2422  nnz_cache[6 + 8 * 0] =
2423  nnz_cache[7 + 8 * 0] = (h->cbp_table[top_xy] & 0x8000) >> 12;
2424  }
2425  if (IS_8x8DCT(left_type[LTOP])) {
2426  nnz_cache[3 + 8 * 1] =
2427  nnz_cache[3 + 8 * 2] = (h->cbp_table[left_xy[LTOP]] & 0x2000) >> 12; // FIXME check MBAFF
2428  }
2429  if (IS_8x8DCT(left_type[LBOT])) {
2430  nnz_cache[3 + 8 * 3] =
2431  nnz_cache[3 + 8 * 4] = (h->cbp_table[left_xy[LBOT]] & 0x8000) >> 12; // FIXME check MBAFF
2432  }
2433 
2434  if (IS_8x8DCT(mb_type)) {
2435  nnz_cache[scan8[0]] =
2436  nnz_cache[scan8[1]] =
2437  nnz_cache[scan8[2]] =
2438  nnz_cache[scan8[3]] = (sl->cbp & 0x1000) >> 12;
2439 
2440  nnz_cache[scan8[0 + 4]] =
2441  nnz_cache[scan8[1 + 4]] =
2442  nnz_cache[scan8[2 + 4]] =
2443  nnz_cache[scan8[3 + 4]] = (sl->cbp & 0x2000) >> 12;
2444 
2445  nnz_cache[scan8[0 + 8]] =
2446  nnz_cache[scan8[1 + 8]] =
2447  nnz_cache[scan8[2 + 8]] =
2448  nnz_cache[scan8[3 + 8]] = (sl->cbp & 0x4000) >> 12;
2449 
2450  nnz_cache[scan8[0 + 12]] =
2451  nnz_cache[scan8[1 + 12]] =
2452  nnz_cache[scan8[2 + 12]] =
2453  nnz_cache[scan8[3 + 12]] = (sl->cbp & 0x8000) >> 12;
2454  }
2455  }
2456 
2457  return 0;
2458 }
2459 
2460 static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
2461 {
2462  uint8_t *dest_y, *dest_cb, *dest_cr;
2463  int linesize, uvlinesize, mb_x, mb_y;
2464  const int end_mb_y = sl->mb_y + FRAME_MBAFF(h);
2465  const int old_slice_type = sl->slice_type;
2466  const int pixel_shift = h->pixel_shift;
2467  const int block_h = 16 >> h->chroma_y_shift;
2468 
2469  if (h->postpone_filter)
2470  return;
2471 
2472  if (sl->deblocking_filter) {
2473  for (mb_x = start_x; mb_x < end_x; mb_x++)
2474  for (mb_y = end_mb_y - FRAME_MBAFF(h); mb_y <= end_mb_y; mb_y++) {
2475  int mb_xy, mb_type;
2476  mb_xy = sl->mb_xy = mb_x + mb_y * h->mb_stride;
2477  mb_type = h->cur_pic.mb_type[mb_xy];
2478 
2479  if (FRAME_MBAFF(h))
2480  sl->mb_mbaff =
2481  sl->mb_field_decoding_flag = !!IS_INTERLACED(mb_type);
2482 
2483  sl->mb_x = mb_x;
2484  sl->mb_y = mb_y;
2485  dest_y = h->cur_pic.f->data[0] +
2486  ((mb_x << pixel_shift) + mb_y * sl->linesize) * 16;
2487  dest_cb = h->cur_pic.f->data[1] +
2488  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2489  mb_y * sl->uvlinesize * block_h;
2490  dest_cr = h->cur_pic.f->data[2] +
2491  (mb_x << pixel_shift) * (8 << CHROMA444(h)) +
2492  mb_y * sl->uvlinesize * block_h;
2493  // FIXME simplify above
2494 
2495  if (MB_FIELD(sl)) {
2496  linesize = sl->mb_linesize = sl->linesize * 2;
2497  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize * 2;
2498  if (mb_y & 1) { // FIXME move out of this function?
2499  dest_y -= sl->linesize * 15;
2500  dest_cb -= sl->uvlinesize * (block_h - 1);
2501  dest_cr -= sl->uvlinesize * (block_h - 1);
2502  }
2503  } else {
2504  linesize = sl->mb_linesize = sl->linesize;
2505  uvlinesize = sl->mb_uvlinesize = sl->uvlinesize;
2506  }
2507  backup_mb_border(h, sl, dest_y, dest_cb, dest_cr, linesize,
2508  uvlinesize, 0);
2509  if (fill_filter_caches(h, sl, mb_type))
2510  continue;
2511  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, h->cur_pic.qscale_table[mb_xy]);
2512  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, h->cur_pic.qscale_table[mb_xy]);
2513 
2514  if (FRAME_MBAFF(h)) {
2515  ff_h264_filter_mb(h, sl, mb_x, mb_y, dest_y, dest_cb, dest_cr,
2516  linesize, uvlinesize);
2517  } else {
2518  ff_h264_filter_mb_fast(h, sl, mb_x, mb_y, dest_y, dest_cb,
2519  dest_cr, linesize, uvlinesize);
2520  }
2521  }
2522  }
2523  sl->slice_type = old_slice_type;
2524  sl->mb_x = end_x;
2525  sl->mb_y = end_mb_y - FRAME_MBAFF(h);
2526  sl->chroma_qp[0] = get_chroma_qp(h->ps.pps, 0, sl->qscale);
2527  sl->chroma_qp[1] = get_chroma_qp(h->ps.pps, 1, sl->qscale);
2528 }
2529 
2531 {
2532  const int mb_xy = sl->mb_x + sl->mb_y * h->mb_stride;
2533  int mb_type = (h->slice_table[mb_xy - 1] == sl->slice_num) ?
2534  h->cur_pic.mb_type[mb_xy - 1] :
2535  (h->slice_table[mb_xy - h->mb_stride] == sl->slice_num) ?
2536  h->cur_pic.mb_type[mb_xy - h->mb_stride] : 0;
2537  sl->mb_mbaff = sl->mb_field_decoding_flag = IS_INTERLACED(mb_type) ? 1 : 0;
2538 }
2539 
2540 /**
2541  * Draw edges and report progress for the last MB row.
2542  */
2544 {
2545  int top = 16 * (sl->mb_y >> FIELD_PICTURE(h));
2546  int pic_height = 16 * h->mb_height >> FIELD_PICTURE(h);
2547  int height = 16 << FRAME_MBAFF(h);
2548  int deblock_border = (16 + 4) << FRAME_MBAFF(h);
2549 
2550  if (sl->deblocking_filter) {
2551  if ((top + height) >= pic_height)
2552  height += deblock_border;
2553  top -= deblock_border;
2554  }
2555 
2556  if (top >= pic_height || (top + height) < 0)
2557  return;
2558 
2559  height = FFMIN(height, pic_height - top);
2560  if (top < 0) {
2561  height = top + height;
2562  top = 0;
2563  }
2564 
2565  ff_h264_draw_horiz_band(h, sl, top, height);
2566 
2567  if (h->droppable || sl->h264->slice_ctx[0].er.error_occurred)
2568  return;
2569 
2570  ff_thread_report_progress(&h->cur_pic_ptr->tf, top + height - 1,
2571  h->picture_structure == PICT_BOTTOM_FIELD);
2572 }
2573 
2575  int startx, int starty,
2576  int endx, int endy, int status)
2577 {
2578  if (!sl->h264->enable_er)
2579  return;
2580 
2582  ERContext *er = &sl->h264->slice_ctx[0].er;
2583 
2584  ff_er_add_slice(er, startx, starty, endx, endy, status);
2585  }
2586 }
2587 
2588 static int decode_slice(struct AVCodecContext *avctx, void *arg)
2589 {
2590  H264SliceContext *sl = arg;
2591  const H264Context *h = sl->h264;
2592  int lf_x_start = sl->mb_x;
2593  int orig_deblock = sl->deblocking_filter;
2594  int ret;
2595 
2596  sl->linesize = h->cur_pic_ptr->f->linesize[0];
2597  sl->uvlinesize = h->cur_pic_ptr->f->linesize[1];
2598 
2599  ret = alloc_scratch_buffers(sl, sl->linesize);
2600  if (ret < 0)
2601  return ret;
2602 
2603  sl->mb_skip_run = -1;
2604 
2605  av_assert0(h->block_offset[15] == (4 * ((scan8[15] - scan8[0]) & 7) << h->pixel_shift) + 4 * sl->linesize * ((scan8[15] - scan8[0]) >> 3));
2606 
2607  if (h->postpone_filter)
2608  sl->deblocking_filter = 0;
2609 
2610  sl->is_complex = FRAME_MBAFF(h) || h->picture_structure != PICT_FRAME ||
2611  (CONFIG_GRAY && (h->flags & AV_CODEC_FLAG_GRAY));
2612 
2613  if (!(h->avctx->active_thread_type & FF_THREAD_SLICE) && h->picture_structure == PICT_FRAME && h->slice_ctx[0].er.error_status_table) {
2614  const int start_i = av_clip(sl->resync_mb_x + sl->resync_mb_y * h->mb_width, 0, h->mb_num - 1);
2615  if (start_i) {
2616  int prev_status = h->slice_ctx[0].er.error_status_table[h->slice_ctx[0].er.mb_index2xy[start_i - 1]];
2617  prev_status &= ~ VP_START;
2618  if (prev_status != (ER_MV_END | ER_DC_END | ER_AC_END))
2619  h->slice_ctx[0].er.error_occurred = 1;
2620  }
2621  }
2622 
2623  if (h->ps.pps->cabac) {
2624  /* realign */
2625  align_get_bits(&sl->gb);
2626 
2627  /* init cabac */
2628  ret = ff_init_cabac_decoder(&sl->cabac,
2629  sl->gb.buffer + get_bits_count(&sl->gb) / 8,
2630  (get_bits_left(&sl->gb) + 7) / 8);
2631  if (ret < 0)
2632  return ret;
2633 
2635 
2636  for (;;) {
2637  int ret, eos;
2638  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2639  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2640  sl->next_slice_idx);
2641  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2642  sl->mb_y, ER_MB_ERROR);
2643  return AVERROR_INVALIDDATA;
2644  }
2645 
2646  ret = ff_h264_decode_mb_cabac(h, sl);
2647 
2648  if (ret >= 0)
2649  ff_h264_hl_decode_mb(h, sl);
2650 
2651  // FIXME optimal? or let mb_decode decode 16x32 ?
2652  if (ret >= 0 && FRAME_MBAFF(h)) {
2653  sl->mb_y++;
2654 
2655  ret = ff_h264_decode_mb_cabac(h, sl);
2656 
2657  if (ret >= 0)
2658  ff_h264_hl_decode_mb(h, sl);
2659  sl->mb_y--;
2660  }
2661  eos = get_cabac_terminate(&sl->cabac);
2662 
2663  if ((h->workaround_bugs & FF_BUG_TRUNCATED) &&
2664  sl->cabac.bytestream > sl->cabac.bytestream_end + 2) {
2665  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2666  sl->mb_y, ER_MB_END);
2667  if (sl->mb_x >= lf_x_start)
2668  loop_filter(h, sl, lf_x_start, sl->mb_x + 1);
2669  goto finish;
2670  }
2671  if (sl->cabac.bytestream > sl->cabac.bytestream_end + 2 )
2672  av_log(h->avctx, AV_LOG_DEBUG, "bytestream overread %"PTRDIFF_SPECIFIER"\n", sl->cabac.bytestream_end - sl->cabac.bytestream);
2673  if (ret < 0 || sl->cabac.bytestream > sl->cabac.bytestream_end + 4) {
2674  av_log(h->avctx, AV_LOG_ERROR,
2675  "error while decoding MB %d %d, bytestream %"PTRDIFF_SPECIFIER"\n",
2676  sl->mb_x, sl->mb_y,
2677  sl->cabac.bytestream_end - sl->cabac.bytestream);
2678  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2679  sl->mb_y, ER_MB_ERROR);
2680  return AVERROR_INVALIDDATA;
2681  }
2682 
2683  if (++sl->mb_x >= h->mb_width) {
2684  loop_filter(h, sl, lf_x_start, sl->mb_x);
2685  sl->mb_x = lf_x_start = 0;
2686  decode_finish_row(h, sl);
2687  ++sl->mb_y;
2688  if (FIELD_OR_MBAFF_PICTURE(h)) {
2689  ++sl->mb_y;
2690  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2692  }
2693  }
2694 
2695  if (eos || sl->mb_y >= h->mb_height) {
2696  ff_tlog(h->avctx, "slice end %d %d\n",
2697  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2698  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x - 1,
2699  sl->mb_y, ER_MB_END);
2700  if (sl->mb_x > lf_x_start)
2701  loop_filter(h, sl, lf_x_start, sl->mb_x);
2702  goto finish;
2703  }
2704  }
2705  } else {
2706  for (;;) {
2707  int ret;
2708 
2709  if (sl->mb_x + sl->mb_y * h->mb_width >= sl->next_slice_idx) {
2710  av_log(h->avctx, AV_LOG_ERROR, "Slice overlaps with next at %d\n",
2711  sl->next_slice_idx);
2712  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2713  sl->mb_y, ER_MB_ERROR);
2714  return AVERROR_INVALIDDATA;
2715  }
2716 
2717  ret = ff_h264_decode_mb_cavlc(h, sl);
2718 
2719  if (ret >= 0)
2720  ff_h264_hl_decode_mb(h, sl);
2721 
2722  // FIXME optimal? or let mb_decode decode 16x32 ?
2723  if (ret >= 0 && FRAME_MBAFF(h)) {
2724  sl->mb_y++;
2725  ret = ff_h264_decode_mb_cavlc(h, sl);
2726 
2727  if (ret >= 0)
2728  ff_h264_hl_decode_mb(h, sl);
2729  sl->mb_y--;
2730  }
2731 
2732  if (ret < 0) {
2733  av_log(h->avctx, AV_LOG_ERROR,
2734  "error while decoding MB %d %d\n", sl->mb_x, sl->mb_y);
2735  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2736  sl->mb_y, ER_MB_ERROR);
2737  return ret;
2738  }
2739 
2740  if (++sl->mb_x >= h->mb_width) {
2741  loop_filter(h, sl, lf_x_start, sl->mb_x);
2742  sl->mb_x = lf_x_start = 0;
2743  decode_finish_row(h, sl);
2744  ++sl->mb_y;
2745  if (FIELD_OR_MBAFF_PICTURE(h)) {
2746  ++sl->mb_y;
2747  if (FRAME_MBAFF(h) && sl->mb_y < h->mb_height)
2749  }
2750  if (sl->mb_y >= h->mb_height) {
2751  ff_tlog(h->avctx, "slice end %d %d\n",
2752  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2753 
2754  if ( get_bits_left(&sl->gb) == 0
2755  || get_bits_left(&sl->gb) > 0 && !(h->avctx->err_recognition & AV_EF_AGGRESSIVE)) {
2756  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2757  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2758 
2759  goto finish;
2760  } else {
2761  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2762  sl->mb_x, sl->mb_y, ER_MB_END);
2763 
2764  return AVERROR_INVALIDDATA;
2765  }
2766  }
2767  }
2768 
2769  if (get_bits_left(&sl->gb) <= 0 && sl->mb_skip_run <= 0) {
2770  ff_tlog(h->avctx, "slice end %d %d\n",
2771  get_bits_count(&sl->gb), sl->gb.size_in_bits);
2772 
2773  if (get_bits_left(&sl->gb) == 0) {
2774  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y,
2775  sl->mb_x - 1, sl->mb_y, ER_MB_END);
2776  if (sl->mb_x > lf_x_start)
2777  loop_filter(h, sl, lf_x_start, sl->mb_x);
2778 
2779  goto finish;
2780  } else {
2781  er_add_slice(sl, sl->resync_mb_x, sl->resync_mb_y, sl->mb_x,
2782  sl->mb_y, ER_MB_ERROR);
2783 
2784  return AVERROR_INVALIDDATA;
2785  }
2786  }
2787  }
2788  }
2789 
2790 finish:
2791  sl->deblocking_filter = orig_deblock;
2792  return 0;
2793 }
2794 
2795 /**
2796  * Call decode_slice() for each context.
2797  *
2798  * @param h h264 master context
2799  */
2801 {
2802  AVCodecContext *const avctx = h->avctx;
2803  H264SliceContext *sl;
2804  int context_count = h->nb_slice_ctx_queued;
2805  int ret = 0;
2806  int i, j;
2807 
2808  h->slice_ctx[0].next_slice_idx = INT_MAX;
2809 
2810  if (h->avctx->hwaccel || context_count < 1)
2811  return 0;
2812 
2813  av_assert0(context_count && h->slice_ctx[context_count - 1].mb_y < h->mb_height);
2814 
2815  if (context_count == 1) {
2816 
2817  h->slice_ctx[0].next_slice_idx = h->mb_width * h->mb_height;
2818  h->postpone_filter = 0;
2819 
2820  ret = decode_slice(avctx, &h->slice_ctx[0]);
2821  h->mb_y = h->slice_ctx[0].mb_y;
2822  if (ret < 0)
2823  goto finish;
2824  } else {
2825  av_assert0(context_count > 0);
2826  for (i = 0; i < context_count; i++) {
2827  int next_slice_idx = h->mb_width * h->mb_height;
2828  int slice_idx;
2829 
2830  sl = &h->slice_ctx[i];
2832  sl->er.error_count = 0;
2833  }
2834 
2835  /* make sure none of those slices overlap */
2836  slice_idx = sl->mb_y * h->mb_width + sl->mb_x;
2837  for (j = 0; j < context_count; j++) {
2838  H264SliceContext *sl2 = &h->slice_ctx[j];
2839  int slice_idx2 = sl2->mb_y * h->mb_width + sl2->mb_x;
2840 
2841  if (i == j || slice_idx2 < slice_idx)
2842  continue;
2843  next_slice_idx = FFMIN(next_slice_idx, slice_idx2);
2844  }
2845  sl->next_slice_idx = next_slice_idx;
2846  }
2847 
2848  avctx->execute(avctx, decode_slice, h->slice_ctx,
2849  NULL, context_count, sizeof(h->slice_ctx[0]));
2850 
2851  /* pull back stuff from slices to master context */
2852  sl = &h->slice_ctx[context_count - 1];
2853  h->mb_y = sl->mb_y;
2855  for (i = 1; i < context_count; i++)
2856  h->slice_ctx[0].er.error_count += h->slice_ctx[i].er.error_count;
2857  }
2858 
2859  if (h->postpone_filter) {
2860  h->postpone_filter = 0;
2861 
2862  for (i = 0; i < context_count; i++) {
2863  int y_end, x_end;
2864 
2865  sl = &h->slice_ctx[i];
2866  y_end = FFMIN(sl->mb_y + 1, h->mb_height);
2867  x_end = (sl->mb_y >= h->mb_height) ? h->mb_width : sl->mb_x;
2868 
2869  for (j = sl->resync_mb_y; j < y_end; j += 1 + FIELD_OR_MBAFF_PICTURE(h)) {
2870  sl->mb_y = j;
2871  loop_filter(h, sl, j > sl->resync_mb_y ? 0 : sl->resync_mb_x,
2872  j == y_end - 1 ? x_end : h->mb_width);
2873  }
2874  }
2875  }
2876  }
2877 
2878 finish:
2879  h->nb_slice_ctx_queued = 0;
2880  return ret;
2881 }
#define av_always_inline
Definition: attributes.h:45
uint8_t
int32_t
simple assert() macros that are a bit more flexible than ISO C assert().
#define av_assert1(cond)
assert() equivalent, that does not lie in speed critical code.
Definition: avassert.h:53
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
Libavcodec external API header.
#define FF_CODEC_PROPERTY_CLOSED_CAPTIONS
Definition: avcodec.h:2185
#define FF_COMPLIANCE_STRICT
Strictly conform to all the things in the spec no matter what consequences.
Definition: avcodec.h:1603
#define FF_DEBUG_PICT_INFO
Definition: avcodec.h:1624
#define AV_EF_EXPLODE
abort decoding on minor error detection
Definition: avcodec.h:1656
#define AV_EF_AGGRESSIVE
consider things that a sane encoder should not do as an error
Definition: avcodec.h:1661
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
Definition: avcodec.h:1785
#define FF_BUG_TRUNCATED
Definition: avcodec.h:1586
int ff_init_cabac_decoder(CABACContext *c, const uint8_t *buf, int buf_size)
Definition: cabac.c:165
Context Adaptive Binary Arithmetic Coder inline functions.
static int av_unused get_cabac_terminate(CABACContext *c)
static int FUNC() pps(CodedBitstreamContext *ctx, RWContext *rw, H264RawPPS *current)
static int FUNC() sps(CodedBitstreamContext *ctx, RWContext *rw, H264RawSPS *current)
#define ss(width, name, subs,...)
Definition: cbs_vp9.c:261
#define fail()
Definition: checkasm.h:133
#define FFMAX3(a, b, c)
Definition: common.h:104
#define FFMIN(a, b)
Definition: common.h:105
#define av_mod_uintp2
Definition: common.h:149
#define av_clip_int8
Definition: common.h:131
#define AV_CEIL_RSHIFT(a, b)
Definition: common.h:58
#define av_clip
Definition: common.h:122
#define FFMAX(a, b)
Definition: common.h:103
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
Definition: common.h:72
#define HAVE_THREADS
Definition: config.h:275
#define CONFIG_GRAY
Definition: config.h:556
#define CONFIG_ERROR_RESILIENCE
Definition: config.h:582
#define NULL
Definition: coverity.c:32
Display matrix.
#define MAX_SLICES
Definition: dxva2_hevc.c:29
void ff_er_add_slice(ERContext *s, int startx, int starty, int endx, int endy, int status)
Add a slice.
void ff_er_frame_start(ERContext *s)
#define VP_START
< current MB is the first after a resync marker
#define ER_MB_END
#define ER_MV_END
#define ER_AC_END
#define ER_DC_END
#define ER_MB_ERROR
static void fill_rectangle(int x, int y, int w, int h)
Definition: ffplay.c:828
static int get_bits_left(GetBitContext *gb)
Definition: get_bits.h:849
static unsigned int get_bits1(GetBitContext *s)
Definition: get_bits.h:498
static int get_bits_count(const GetBitContext *s)
Definition: get_bits.h:219
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
Definition: get_bits.h:379
static const uint8_t * align_get_bits(GetBitContext *s)
Definition: get_bits.h:693
exp golomb vlc stuff
static int get_se_golomb(GetBitContext *gb)
read signed exp golomb code.
Definition: golomb.h:241
static int get_ue_golomb_31(GetBitContext *gb)
read unsigned exp golomb code, constraint to a max of 31.
Definition: golomb.h:122
static int get_ue_golomb(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to 8190.
Definition: golomb.h:55
static unsigned get_ue_golomb_long(GetBitContext *gb)
Read an unsigned Exp-Golomb code in the range 0 to UINT32_MAX-1.
Definition: golomb.h:106
#define AV_CODEC_FLAG2_FAST
Allow non spec compliant speedup tricks.
Definition: avcodec.h:348
#define AV_CODEC_FLAG2_SHOW_ALL
Show all frames before the first keyframe.
Definition: avcodec.h:376
#define AV_GET_BUFFER_FLAG_REF
The decoder will keep a reference to the frame and may reuse it later.
Definition: avcodec.h:514
#define AV_CODEC_FLAG_GRAY
Only decode/encode grayscale.
Definition: avcodec.h:308
#define AV_CODEC_FLAG_OUTPUT_CORRUPT
Output even those frames that might be corrupted.
Definition: avcodec.h:283
@ AVDISCARD_ALL
discard all
Definition: avcodec.h:236
@ AVDISCARD_NONKEY
discard all frames except keyframes
Definition: avcodec.h:235
@ AVDISCARD_BIDIR
discard all bidirectional frames
Definition: avcodec.h:233
@ AVDISCARD_NONINTRA
discard all non intra frames
Definition: avcodec.h:234
@ AVDISCARD_NONREF
discard all non reference
Definition: avcodec.h:232
void av_buffer_unref(AVBufferRef **buf)
Free a given reference and automatically free the buffer if there are no more references to it.
Definition: buffer.c:125
AVBufferRef * av_buffer_allocz(buffer_size_t size)
Same as av_buffer_alloc(), except the returned buffer will be initialized to zero.
Definition: buffer.c:83
int av_buffer_replace(AVBufferRef **pdst, AVBufferRef *src)
Ensure dst refers to the same data as src.
Definition: buffer.c:219
AVBufferRef * av_buffer_ref(AVBufferRef *buf)
Create a new reference to an AVBuffer.
Definition: buffer.c:93
AVBufferPool * av_buffer_pool_init(buffer_size_t size, AVBufferRef *(*alloc)(buffer_size_t size))
Allocate and initialize a buffer pool.
Definition: buffer.c:266
AVBufferRef * av_buffer_pool_get(AVBufferPool *pool)
Allocate a new AVBuffer, reusing an old buffer from the pool when available.
Definition: buffer.c:373
void av_buffer_pool_uninit(AVBufferPool **ppool)
Mark the pool as being available for freeing.
Definition: buffer.c:308
int av_dict_set(AVDictionary **pm, const char *key, const char *value, int flags)
Set the given entry in *pm, overwriting an existing entry.
Definition: dict.c:70
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define AVERROR(e)
Definition: error.h:43
#define AV_FRAME_FLAG_CORRUPT
The frame data may be corrupted, e.g.
Definition: frame.h:543
AVFrameSideData * av_frame_new_side_data(AVFrame *frame, enum AVFrameSideDataType type, buffer_size_t size)
Add a new side data to a frame.
Definition: frame.c:726
AVFrameSideData * av_frame_new_side_data_from_buf(AVFrame *frame, enum AVFrameSideDataType type, AVBufferRef *buf)
Add a new side data to a frame from an existing AVBufferRef.
Definition: frame.c:694
@ AV_FRAME_DATA_DISPLAYMATRIX
This side data contains a 3x3 transformation matrix describing an affine transformation that needs to...
Definition: frame.h:84
@ AV_FRAME_DATA_A53_CC
ATSC A53 Part 4 Closed Captions.
Definition: frame.h:58
@ AV_FRAME_DATA_SEI_UNREGISTERED
User data unregistered metadata associated with a video frame.
Definition: frame.h:194
@ AV_FRAME_DATA_AFD
Active Format Description data consisting of a single byte as specified in ETSI TS 101 154 using AVAc...
Definition: frame.h:89
@ AV_FRAME_DATA_S12M_TIMECODE
Timecode which conforms to SMPTE ST 12-1.
Definition: frame.h:168
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:215
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:210
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
int av_reduce(int *dst_num, int *dst_den, int64_t num, int64_t den, int64_t max)
Reduce a fraction.
Definition: rational.c:35
static int av_cmp_q(AVRational a, AVRational b)
Compare two rationals.
Definition: rational.h:89
void av_fast_mallocz(void *ptr, unsigned int *size, size_t min_size)
Allocate and clear a buffer, reusing the given one if large enough.
Definition: mem.c:507
void av_fast_malloc(void *ptr, unsigned int *size, size_t min_size)
Allocate a buffer, reusing the given one if large enough.
Definition: mem.c:502
int av_reallocp_array(void *ptr, size_t nmemb, size_t size)
Allocate, reallocate, or free an array through a pointer to a pointer.
Definition: mem.c:206
char av_get_picture_type_char(enum AVPictureType pict_type)
Return a single letter to describe the given picture type pict_type.
Definition: utils.c:83
@ AV_PICTURE_TYPE_I
Intra.
Definition: avutil.h:274
@ AV_PICTURE_TYPE_SP
Switching Predicted.
Definition: avutil.h:279
@ AV_PICTURE_TYPE_P
Predicted.
Definition: avutil.h:275
@ AV_PICTURE_TYPE_SI
Switching Intra.
Definition: avutil.h:278
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
Definition: avutil.h:276
void av_display_rotation_set(int32_t matrix[9], double angle)
Initialize a transformation matrix describing a pure counterclockwise rotation by the specified angle...
Definition: display.c:50
void av_display_matrix_flip(int32_t matrix[9], int hflip, int vflip)
Flip the input matrix horizontally and/or vertically.
Definition: display.c:65
#define AV_STEREO3D_FLAG_INVERT
Inverted views, Right/Bottom represents the left view.
Definition: stereo3d.h:167
AVStereo3D * av_stereo3d_create_side_data(AVFrame *frame)
Allocate a complete AVFrameSideData and add it to the frame.
Definition: stereo3d.c:33
@ AV_STEREO3D_COLUMNS
Views are packed per column.
Definition: stereo3d.h:141
@ AV_STEREO3D_LINES
Views are packed per line, as if interlaced.
Definition: stereo3d.h:129
@ AV_STEREO3D_2D
Video is not stereoscopic (and metadata has to be there).
Definition: stereo3d.h:55
@ AV_STEREO3D_CHECKERBOARD
Views are packed in a checkerboard-like structure per pixel.
Definition: stereo3d.h:104
@ AV_STEREO3D_TOPBOTTOM
Views are on top of each other.
Definition: stereo3d.h:79
@ AV_STEREO3D_SIDEBYSIDE_QUINCUNX
Views are next to each other, but when upscaling apply a checkerboard pattern.
Definition: stereo3d.h:117
@ AV_STEREO3D_FRAMESEQUENCE
Views are alternated temporally.
Definition: stereo3d.h:92
@ AV_STEREO3D_SIDEBYSIDE
Views are next to each other.
Definition: stereo3d.h:67
@ AV_STEREO3D_VIEW_RIGHT
Frame contains only the right view.
Definition: stereo3d.h:161
@ AV_STEREO3D_VIEW_LEFT
Frame contains only the left view.
Definition: stereo3d.h:156
H.264 common definitions.
@ H264_NAL_IDR_SLICE
Definition: h264.h:39
#define CABAC(h)
Definition: h264_cabac.c:28
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cabac.c:1911
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl)
Definition: h264_cabac.c:1262
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl)
Decode a macroblock.
Definition: h264_cavlc.c:697
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:121
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl)
Definition: h264_direct.c:62
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y, uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr, unsigned int linesize, unsigned int uvlinesize)
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl)
Definition: h264_mb.c:799
H.264 / AVC / MPEG-4 part10 motion vector prediction.
int ff_h264_get_profile(const SPS *sps)
Compute profile from profile_idc and constraint_set?_flags.
Definition: h264_parse.c:529
int ff_h264_parse_ref_count(int *plist_count, int ref_count[2], GetBitContext *gb, const PPS *pps, int slice_type_nos, int picture_structure, void *logctx)
Definition: h264_parse.c:219
int ff_h264_init_poc(int pic_field_poc[2], int *pic_poc, const SPS *sps, H264POCContext *pc, int picture_structure, int nal_ref_idc)
Definition: h264_parse.c:277
int ff_h264_pred_weight_table(GetBitContext *gb, const SPS *sps, const int *ref_count, int slice_type_nos, H264PredWeightTable *pwt, int picture_structure, void *logctx)
Definition: h264_parse.c:27
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup)
Definition: h264_picture.c:159
void ff_h264_unref_picture(H264Context *h, H264Picture *pic)
Definition: h264_picture.c:44
void ff_h264_set_erpic(ERPicture *dst, H264Picture *src)
Definition: h264_picture.c:136
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src)
Definition: h264_picture.c:66
H.264 parameter set handling.
#define MAX_PPS_COUNT
Definition: h264_ps.h:38
int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx)
Definition: h264_refs.c:423
int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb, const H2645NAL *nal, void *logctx)
Definition: h264_refs.c:834
int ff_h264_execute_ref_pic_marking(H264Context *h)
Execute the reference picture marking (memory management control operations).
Definition: h264_refs.c:610
int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl)
Definition: h264_refs.c:299
int ff_h264_sei_process_picture_timing(H264SEIPictureTiming *h, const SPS *sps, void *logctx)
Parse the contents of a picture timing message given an active SPS.
Definition: h264_sei.c:62
@ H264_SEI_FPA_TYPE_2D
Definition: h264_sei.h:52
@ H264_SEI_FPA_TYPE_INTERLEAVE_ROW
Definition: h264_sei.h:48
@ H264_SEI_FPA_TYPE_INTERLEAVE_TEMPORAL
Definition: h264_sei.h:51
@ H264_SEI_FPA_TYPE_TOP_BOTTOM
Definition: h264_sei.h:50
@ H264_SEI_FPA_TYPE_CHECKERBOARD
Definition: h264_sei.h:46
@ H264_SEI_FPA_TYPE_INTERLEAVE_COLUMN
Definition: h264_sei.h:47
@ H264_SEI_FPA_TYPE_SIDE_BY_SIDE
Definition: h264_sei.h:49
@ H264_SEI_PIC_STRUCT_BOTTOM_FIELD
2: bottom field
Definition: h264_sei.h:33
@ H264_SEI_PIC_STRUCT_BOTTOM_TOP
4: bottom field, top field, in that order
Definition: h264_sei.h:35
@ H264_SEI_PIC_STRUCT_TOP_BOTTOM_TOP
5: top field, bottom field, top field repeated, in that order
Definition: h264_sei.h:36
@ H264_SEI_PIC_STRUCT_TOP_FIELD
1: top field
Definition: h264_sei.h:32
@ H264_SEI_PIC_STRUCT_FRAME_TRIPLING
8: frame tripling
Definition: h264_sei.h:39
@ H264_SEI_PIC_STRUCT_BOTTOM_TOP_BOTTOM
6: bottom field, top field, bottom field repeated, in that order
Definition: h264_sei.h:37
@ H264_SEI_PIC_STRUCT_TOP_BOTTOM
3: top field, bottom field, in that order
Definition: h264_sei.h:34
@ H264_SEI_PIC_STRUCT_FRAME_DOUBLING
7: frame doubling
Definition: h264_sei.h:38
@ H264_SEI_PIC_STRUCT_FRAME
0: frame
Definition: h264_sei.h:31
static int h264_frame_start(H264Context *h)
Definition: h264_slice.c:467
static void init_dimensions(H264Context *h)
Definition: h264_slice.c:879
int ff_h264_update_thread_context(AVCodecContext *dst, const AVCodecContext *src)
Definition: h264_slice.c:296
static void init_scan_tables(H264Context *h)
initialize scan tables
Definition: h264_slice.c:732
static int fill_filter_caches(const H264Context *h, H264SliceContext *sl, int mb_type)
Definition: h264_slice.c:2318
static int h264_slice_init(H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:1955
static void implicit_weight_table(const H264Context *h, H264SliceContext *sl, int field)
Initialize implicit_weight table.
Definition: h264_slice.c:668
static void er_add_slice(H264SliceContext *sl, int startx, int starty, int endx, int endy, int status)
Definition: h264_slice.c:2574
int ff_h264_execute_decode_slices(H264Context *h)
Call decode_slice() for each context.
Definition: h264_slice.c:2800
static void predict_field_decoding_flag(const H264Context *h, H264SliceContext *sl)
Definition: h264_slice.c:2530
static int h264_field_start(H264Context *h, const H264SliceContext *sl, const H2645NAL *nal, int first_slice)
Definition: h264_slice.c:1454
static void copy_picture_range(H264Picture **to, H264Picture **from, int count, H264Context *new_base, H264Context *old_base)
Definition: h264_slice.c:280
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal)
Submit a slice for decoding.
Definition: h264_slice.c:2091
#define REBASE_PICTURE(pic, new_ctx, old_ctx)
Definition: h264_slice.c:275
static av_always_inline void fill_filter_caches_inter(const H264Context *h, H264SliceContext *sl, int mb_type, int top_xy, int left_xy[LEFT_MBS], int top_type, int left_type[LEFT_MBS], int mb_xy, int list)
Definition: h264_slice.c:2234
static const uint8_t field_scan[16+1]
Definition: h264_slice.c:50
static void loop_filter(const H264Context *h, H264SliceContext *sl, int start_x, int end_x)
Definition: h264_slice.c:2460
static av_always_inline void backup_mb_border(const H264Context *h, H264SliceContext *sl, uint8_t *src_y, uint8_t *src_cb, uint8_t *src_cr, int linesize, int uvlinesize, int simple)
Definition: h264_slice.c:566
#define IN_RANGE(a, b, size)
Definition: h264_slice.c:273
static int alloc_scratch_buffers(H264SliceContext *sl, int linesize)
Definition: h264_slice.c:128
static int h264_slice_header_parse(const H264Context *h, H264SliceContext *sl, const H2645NAL *nal)
Definition: h264_slice.c:1741
static const uint8_t field_scan8x8[64+1]
Definition: h264_slice.c:57
static int h264_export_frame_props(H264Context *h)
Definition: h264_slice.c:1138
static int alloc_picture(H264Context *h, H264Picture *pic)
Definition: h264_slice.c:187
static const uint8_t field_scan8x8_cavlc[64+1]
Definition: h264_slice.c:76
static void release_unused_pictures(H264Context *h, int remove_current)
Definition: h264_slice.c:115
#define HWACCEL_MAX
static int h264_slice_header_init(H264Context *h)
Definition: h264_slice.c:919
static int h264_init_ps(H264Context *h, const H264SliceContext *sl, int first_slice)
Definition: h264_slice.c:1019
static enum AVPixelFormat get_pixel_format(H264Context *h, int force_callback)
Definition: h264_slice.c:766
static int decode_slice(struct AVCodecContext *avctx, void *arg)
Definition: h264_slice.c:2588
int ff_h264_get_slice_type(const H264SliceContext *sl)
Reconstruct bitstream slice_type.
Definition: h264_slice.c:2216
static int init_table_pools(H264Context *h)
Definition: h264_slice.c:160
static void decode_finish_row(const H264Context *h, H264SliceContext *sl)
Draw edges and report progress for the last MB row.
Definition: h264_slice.c:2543
static enum AVPixelFormat non_j_pixfmt(enum AVPixelFormat a)
Definition: h264_slice.c:1008
static int h264_select_output_frame(H264Context *h)
Definition: h264_slice.c:1351
static const uint8_t zigzag_scan8x8_cavlc[64+1]
Definition: h264_slice.c:96
#define TRANSPOSE(x)
static int find_unused_picture(H264Context *h)
Definition: h264_slice.c:261
av_cold void ff_h264chroma_init(H264ChromaContext *c, int bit_depth)
Definition: h264chroma.c:41
const uint8_t ff_h264_golomb_to_pict_type[5]
Definition: h264data.c:37
H.264 / AVC / MPEG-4 part10 codec.
#define FIELD_OR_MBAFF_PICTURE(h)
Definition: h264dec.h:92
#define FRAME_RECOVERED_IDR
We have seen an IDR, so all the following frames in coded order are correctly decodable.
Definition: h264dec.h:524
#define MB_MBAFF(h)
Definition: h264dec.h:72
static const uint8_t scan8[16 *3+3]
Definition: h264dec.h:651
#define LBOT
Definition: h264dec.h:78
#define CHROMA444(h)
Definition: h264dec.h:100
#define H264_MAX_PICTURE_COUNT
Definition: h264dec.h:53
#define IS_8x8DCT(a)
Definition: h264dec.h:105
#define MB_FIELD(sl)
Definition: h264dec.h:73
#define FIELD_PICTURE(h)
Definition: h264dec.h:75
#define LIST_NOT_USED
Definition: h264dec.h:397
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
Definition: h264dec.h:667
static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
Get the chroma qp.
Definition: h264dec.h:688
#define FRAME_RECOVERED_SEI
Sufficient number of frames have been decoded since a SEI recovery point, so all the following frames...
Definition: h264dec.h:529
#define CHROMA422(h)
Definition: h264dec.h:99
#define LEFT_MBS
Definition: h264dec.h:76
#define MAX_DELAYED_PIC_COUNT
Definition: h264dec.h:57
#define FRAME_MBAFF(h)
Definition: h264dec.h:74
#define LTOP
Definition: h264dec.h:77
for(j=16;j >0;--j)
#define IS_INTRA(x, y)
misc image utilities
int i
Definition: input.c:407
#define AV_ZERO32(d)
Definition: intreadwrite.h:629
#define AV_COPY128(d, s)
Definition: intreadwrite.h:609
#define AV_COPY64(d, s)
Definition: intreadwrite.h:605
#define AV_ZERO128(d)
Definition: intreadwrite.h:637
#define AV_WN32A(p, v)
Definition: intreadwrite.h:538
#define AV_COPY32(d, s)
Definition: intreadwrite.h:601
#define DELAYED_PIC_REF
Value of Picture.reference when Picture is not a reference picture, but is held for delayed output.
Definition: diracdec.c:68
int ff_h264_alloc_tables(H264Context *h)
Allocate tables.
Definition: h264dec.c:181
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl)
Init context Allocate buffers which are not shared amongst multiple threads.
Definition: h264dec.c:222
void ff_h264_free_tables(H264Context *h)
Definition: h264dec.c:138
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height)
Definition: h264dec.c:103
void ff_h264_flush_change(H264Context *h)
Definition: h264dec.c:439
av_cold void ff_h264dsp_init(H264DSPContext *c, const int bit_depth, const int chroma_format_idc)
Definition: h264dsp.c:67
av_cold void ff_h264_pred_init(H264PredContext *h, int codec_id, const int bit_depth, int chroma_format_idc)
Set the intra prediction function pointers.
Definition: h264pred.c:411
av_cold void ff_h264qpel_init(H264QpelContext *c, int bit_depth)
Definition: h264qpel.c:49
void ff_color_frame(AVFrame *frame, const int color[4])
Definition: utils.c:415
int ff_set_sar(AVCodecContext *avctx, AVRational sar)
Check that the provided sample aspect ratio is valid and set it on the codec context.
Definition: utils.c:99
#define ff_tlog(ctx,...)
Definition: internal.h:96
int ff_thread_can_start_frame(AVCodecContext *avctx)
const char * arg
Definition: jacosubdec.c:66
const char * from
Definition: jacosubdec.c:65
int ff_thread_ref_frame(ThreadFrame *dst, const ThreadFrame *src)
Definition: utils.c:940
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
Definition: videodsp.c:38
const char * to
Definition: webvttdec.c:34
common internal API header
#define PTRDIFF_SPECIFIER
Definition: internal.h:192
Stereoscopic video.
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:309
uint8_t w
Definition: llviddspenc.c:39
#define FFALIGN(x, a)
Definition: macros.h:48
const uint8_t ff_zigzag_direct[64]
Definition: mathtables.c:98
const uint8_t ff_zigzag_scan[16+1]
Definition: mathtables.c:109
#define IS_INTERLACED(a)
Definition: mpegutils.h:83
#define IS_DIRECT(a)
Definition: mpegutils.h:84
#define IS_INTER(a)
Definition: mpegutils.h:79
#define USES_LIST(a, list)
Definition: mpegutils.h:99
#define PICT_TOP_FIELD
Definition: mpegutils.h:37
#define PICT_BOTTOM_FIELD
Definition: mpegutils.h:38
#define PICT_FRAME
Definition: mpegutils.h:39
mpegvideo header.
const char * av_color_transfer_name(enum AVColorTransferCharacteristic transfer)
Definition: pixdesc.c:2940
int av_pix_fmt_get_chroma_sub_sample(enum AVPixelFormat pix_fmt, int *h_shift, int *v_shift)
Utility function to access log2_chroma_w log2_chroma_h from the pixel format AVPixFmtDescriptor.
Definition: pixdesc.c:2601
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2489
#define AV_PIX_FMT_YUV444P12
Definition: pixfmt.h:406
#define AV_PIX_FMT_YUV444P9
Definition: pixfmt.h:398
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:399
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:414
#define AV_PIX_FMT_YUV422P9
Definition: pixfmt.h:397
@ AVCOL_RANGE_MPEG
Narrow or limited range content.
Definition: pixfmt.h:569
@ AVCOL_RANGE_JPEG
Full range content.
Definition: pixfmt.h:586
#define AV_PIX_FMT_YUV420P12
Definition: pixfmt.h:403
#define AV_PIX_FMT_YUV422P12
Definition: pixfmt.h:404
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:415
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:400
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:416
#define AV_PIX_FMT_YUV420P9
Definition: pixfmt.h:396
#define AV_PIX_FMT_YUV420P14
Definition: pixfmt.h:407
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
@ AV_PIX_FMT_VIDEOTOOLBOX
hardware decoding through Videotoolbox
Definition: pixfmt.h:282
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
@ AV_PIX_FMT_DXVA2_VLD
HW decoding through DXVA2, Picture.data[3] contains a LPDIRECT3DSURFACE9 pointer.
Definition: pixfmt.h:137
@ AV_PIX_FMT_CUDA
HW acceleration through CUDA.
Definition: pixfmt.h:235
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
@ AV_PIX_FMT_D3D11
Hardware surfaces for Direct3D11.
Definition: pixfmt.h:313
@ AV_PIX_FMT_D3D11VA_VLD
HW decoding through Direct3D11 via old API, Picture.data[3] contains a ID3D11VideoDecoderOutputView p...
Definition: pixfmt.h:229
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:79
@ AV_PIX_FMT_VAAPI
Definition: pixfmt.h:122
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:78
@ AV_PIX_FMT_VDPAU
HW acceleration through VDPAU, Picture.data[3] contains a VdpVideoSurface.
Definition: pixfmt.h:197
#define AV_PIX_FMT_YUV422P14
Definition: pixfmt.h:408
@ AVCOL_TRC_UNSPECIFIED
Definition: pixfmt.h:486
#define AV_PIX_FMT_YUV444P14
Definition: pixfmt.h:409
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:417
#define AV_PIX_FMT_YUV444P10
Definition: pixfmt.h:402
@ AVCOL_SPC_RGB
order of coefficients is actually GBR, also IEC 61966-2-1 (sRGB)
Definition: pixfmt.h:513
void ff_thread_report_progress(ThreadFrame *f, int n, int field)
Notify later decoding threads when part of their reference picture is ready.
FF_ENABLE_DEPRECATION_WARNINGS int ff_thread_get_buffer(AVCodecContext *avctx, ThreadFrame *f, int flags)
Wrapper around get_buffer() for frame-multithreaded codecs.
void ff_thread_await_progress(ThreadFrame *f, int n, int field)
Wait for earlier decoding threads to finish reference pictures.
void ff_thread_release_buffer(AVCodecContext *avctx, ThreadFrame *f)
Wrapper around release_buffer() frame-for multithreaded codecs.
FF_DISABLE_DEPRECATION_WARNINGS enum AVPixelFormat ff_thread_get_format(AVCodecContext *avctx, const enum AVPixelFormat *fmt)
Wrapper around get_format() for frame-multithreaded codecs.
useful rectangle filling function
#define tb
Definition: regdef.h:68
#define td
Definition: regdef.h:70
#define fp
Definition: regdef.h:44
int pt
Definition: rtp.c:35
#define FF_ARRAY_ELEMS(a)
AVBuffer * buffer
Definition: buffer.h:85
uint8_t * data
The data buffer.
Definition: buffer.h:92
A reference counted buffer type.
main external API structure.
Definition: avcodec.h:536
int(* execute)(struct AVCodecContext *c, int(*func)(struct AVCodecContext *c2, void *arg), void *arg2, int *ret, int count, int size)
The codec may call this to execute several independent things.
Definition: avcodec.h:1824
void * priv_data
Definition: avcodec.h:563
Structure to hold side data for an AVFrame.
Definition: frame.h:220
uint8_t * data
Definition: frame.h:222
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
int coded_picture_number
picture number in bitstream order
Definition: frame.h:432
size_t crop_right
Definition: frame.h:681
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:332
int width
Definition: frame.h:376
int key_frame
1 -> keyframe, 0-> not
Definition: frame.h:396
int height
Definition: frame.h:376
AVBufferRef * buf[AV_NUM_DATA_POINTERS]
AVBuffer references backing the data for this frame.
Definition: frame.h:509
size_t crop_top
Definition: frame.h:678
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:349
size_t crop_left
Definition: frame.h:680
size_t crop_bottom
Definition: frame.h:679
int format
format of the frame, -1 if unknown or unset Values correspond to enum AVPixelFormat for video frames,...
Definition: frame.h:391
enum AVPictureType pict_type
Picture type of the frame.
Definition: frame.h:401
int frame_priv_data_size
Size of per-frame hardware accelerator private data.
Definition: avcodec.h:2548
Stereo 3D type: this structure describes how two videos are packed within a single video surface,...
Definition: stereo3d.h:176
enum AVStereo3DType type
How views are packed within the video.
Definition: stereo3d.h:180
int flags
Additional information about the frame packing.
Definition: stereo3d.h:185
enum AVStereo3DView view
Determines which views are packed.
Definition: stereo3d.h:190
const uint8_t * bytestream_end
Definition: cabac.h:46
const uint8_t * bytestream
Definition: cabac.h:45
atomic_int error_count
const uint8_t * buffer
Definition: get_bits.h:62
int size_in_bits
Definition: get_bits.h:68
int ref_idc
H.264 only, nal_ref_idc.
Definition: h2645_parse.h:70
int type
NAL unit type.
Definition: h2645_parse.h:52
GetBitContext gb
Definition: h2645_parse.h:47
H264Context.
Definition: h264dec.h:344
H264Picture DPB[H264_MAX_PICTURE_COUNT]
Definition: h264dec.h:352
int enable_er
Definition: h264dec.h:552
H264SliceContext * slice_ctx
Definition: h264dec.h:357
const PPS * pps
Definition: h264dec.h:167
uint32_t * mb_type
Definition: h264dec.h:140
int mb_stride
Definition: h264dec.h:170
int recovered
picture at IDR or recovery point + recovery count
Definition: h264dec.h:162
int invalid_gap
Definition: h264dec.h:163
AVBufferRef * motion_val_buf[2]
Definition: h264dec.h:136
int16_t(*[2] motion_val)[2]
Definition: h264dec.h:137
int8_t * ref_index[2]
Definition: h264dec.h:146
int reference
Definition: h264dec.h:161
int8_t * qscale_table
Definition: h264dec.h:134
int sei_recovery_frame_cnt
Definition: h264dec.h:164
int field_picture
whether or not picture was encoded in separate fields
Definition: h264dec.h:159
int frame_num
frame_num (raw frame_num from slice header)
Definition: h264dec.h:150
int long_ref
1->long term reference 0->short term reference
Definition: h264dec.h:155
void * hwaccel_picture_private
hardware accelerator private data
Definition: h264dec.h:143
AVBufferRef * mb_type_buf
Definition: h264dec.h:139
AVBufferRef * ref_index_buf[2]
Definition: h264dec.h:145
AVFrame * f
Definition: h264dec.h:130
int mmco_reset
MMCO_RESET set this 1.
Definition: h264dec.h:151
int field_poc[2]
top/bottom POC
Definition: h264dec.h:148
AVBufferRef * hwaccel_priv_buf
Definition: h264dec.h:142
int poc
frame POC
Definition: h264dec.h:149
AVBufferRef * pps_buf
Definition: h264dec.h:166
int mb_height
Definition: h264dec.h:169
int mb_width
Definition: h264dec.h:169
AVBufferRef * qscale_table_buf
Definition: h264dec.h:133
ThreadFrame tf
Definition: h264dec.h:131
int chroma_log2_weight_denom
Definition: h264_parse.h:34
int implicit_weight[48][48][2]
Definition: h264_parse.h:40
int chroma_weight_flag[2]
7.4.3.2 chroma_weight_lX_flag
Definition: h264_parse.h:36
int luma_weight_flag[2]
7.4.3.2 luma_weight_lX_flag
Definition: h264_parse.h:35
H264Picture * parent
Definition: h264dec.h:181
int poc
Definition: h264dec.h:178
int reference
Definition: h264dec.h:177
AVBufferRef * buf_ref
Definition: h264_sei.h:108
AVBufferRef ** buf_ref
Definition: h264_sei.h:113
int cabac_init_idc
Definition: h264dec.h:327
ptrdiff_t mb_linesize
may be equal to s->linesize or s->linesize * 2, for mbaff
Definition: h264dec.h:234
ptrdiff_t uvlinesize
Definition: h264dec.h:233
int mb_field_decoding_flag
Definition: h264dec.h:248
unsigned int list_count
Definition: h264dec.h:275
int8_t ref_cache[2][5 *8]
Definition: h264dec.h:307
int next_slice_idx
Definition: h264dec.h:243
ERContext er
Definition: h264dec.h:187
H264PredWeightTable pwt
Definition: h264dec.h:204
int slice_type_fixed
Definition: h264dec.h:192
int left_type[LEFT_MBS]
Definition: h264dec.h:223
int last_qscale_diff
Definition: h264dec.h:197
unsigned int pps_id
Definition: h264dec.h:285
unsigned int first_mb_addr
Definition: h264dec.h:241
int bipred_scratchpad_allocated
Definition: h264dec.h:293
ptrdiff_t linesize
Definition: h264dec.h:233
ptrdiff_t mb_uvlinesize
Definition: h264dec.h:235
int16_t mv_cache[2][5 *8][2]
Motion vector cache.
Definition: h264dec.h:306
int left_mb_xy[LEFT_MBS]
Definition: h264dec.h:218
CABACContext cabac
Cabac.
Definition: h264dec.h:325
uint8_t * edge_emu_buffer
Definition: h264dec.h:291
int redundant_pic_count
Definition: h264dec.h:251
struct H264Context * h264
Definition: h264dec.h:185
int delta_poc_bottom
Definition: h264dec.h:335
int delta_poc[2]
Definition: h264dec.h:336
int deblocking_filter
disable_deblocking_filter_idc with 1 <-> 0
Definition: h264dec.h:200
int top_borders_allocated[2]
Definition: h264dec.h:295
uint8_t * bipred_scratchpad
Definition: h264dec.h:290
int qp_thresh
QP threshold to skip loopfilter.
Definition: h264dec.h:196
int slice_type_nos
S free slice type (SI/SP are remapped to I/P)
Definition: h264dec.h:191
uint8_t(*[2] top_borders)[(16 *3) *2]
Definition: h264dec.h:292
H264Ref ref_list[2][48]
0..15: frame refs, 16..47: mbaff field refs.
Definition: h264dec.h:276
int direct_spatial_mv_pred
Definition: h264dec.h:258
int mb_mbaff
mb_aff_frame && mb_field_decoding_flag
Definition: h264dec.h:249
uint8_t(*[2] mvd_table)[2]
Definition: h264dec.h:320
GetBitContext gb
Definition: h264dec.h:186
int chroma_qp[2]
Definition: h264dec.h:195
int8_t * intra4x4_pred_mode
Definition: h264dec.h:213
int edge_emu_buffer_allocated
Definition: h264dec.h:294
int explicit_ref_marking
Definition: h264dec.h:331
int slice_alpha_c0_offset
Definition: h264dec.h:201
uint8_t non_zero_count_cache[15 *8]
non zero coeff count cache.
Definition: h264dec.h:301
int slice_beta_offset
Definition: h264dec.h:202
unsigned int ref_count[2]
num_ref_idx_l0/1_active_minus1 + 1
Definition: h264dec.h:274
int picture_structure
Definition: h264dec.h:247
MMCO mmco[MAX_MMCO_COUNT]
Definition: h264dec.h:329
Picture parameter set.
Definition: h264_ps.h:111
Sequence parameter set.
Definition: h264_ps.h:44
AVFrame * f
Definition: thread.h:35
#define avpriv_request_sample(...)
#define av_freep(p)
#define av_log(a,...)
static uint8_t tmp[11]
Definition: aes_ctr.c:27
#define src
Definition: vp8dsp.c:255
static int ref[MAX_W *MAX_W]
Definition: jpeg2000dwt.c:107
FILE * out
Definition: movenc.c:54
static void finish(void)
Definition: movenc.c:342
#define height
#define width
uint32_t av_timecode_get_smpte(AVRational rate, int drop, int hh, int mm, int ss, int ff)
Convert sei info to SMPTE 12M binary representation.
Definition: timecode.c:68
char * av_timecode_make_smpte_tc_string2(char *buf, AVRational rate, uint32_t tcsmpte, int prevent_df, int skip_field)
Get the timecode string from the SMPTE timecode format.
Definition: timecode.c:136
#define AV_TIMECODE_STR_SIZE
Definition: timecode.h:33
static double cr(void *priv, double x, double y)
Definition: vf_geq.c:216
static double cb(void *priv, double x, double y)
Definition: vf_geq.c:215
if(ret< 0)
Definition: vf_mcdeint.c:282
static double c[64]