FFmpeg  4.4.4
vf_lut3d.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2013 Clément Bœsch
3  * Copyright (c) 2018 Paul B Mahol
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * 3D Lookup table filter
25  */
26 
27 #include "float.h"
28 
29 #include "libavutil/opt.h"
30 #include "libavutil/file.h"
31 #include "libavutil/intreadwrite.h"
32 #include "libavutil/intfloat.h"
33 #include "libavutil/avassert.h"
34 #include "libavutil/pixdesc.h"
35 #include "libavutil/avstring.h"
36 #include "avfilter.h"
37 #include "drawutils.h"
38 #include "formats.h"
39 #include "framesync.h"
40 #include "internal.h"
41 #include "video.h"
42 
43 #define R 0
44 #define G 1
45 #define B 2
46 #define A 3
47 
55 };
56 
57 struct rgbvec {
58  float r, g, b;
59 };
60 
61 /* 3D LUT don't often go up to level 32, but it is common to have a Hald CLUT
62  * of 512x512 (64x64x64) */
63 #define MAX_LEVEL 256
64 #define PRELUT_SIZE 65536
65 
66 typedef struct Lut3DPreLut {
67  int size;
68  float min[3];
69  float max[3];
70  float scale[3];
71  float* lut[3];
72 } Lut3DPreLut;
73 
74 typedef struct LUT3DContext {
75  const AVClass *class;
76  int interpolation; ///<interp_mode
77  char *file;
79  int step;
81  struct rgbvec scale;
82  struct rgbvec *lut;
83  int lutsize;
84  int lutsize2;
86 #if CONFIG_HALDCLUT_FILTER
87  uint8_t clut_rgba_map[4];
88  int clut_step;
89  int clut_bits;
90  int clut_planar;
91  int clut_float;
92  int clut_width;
94 #endif
95 } LUT3DContext;
96 
97 typedef struct ThreadData {
98  AVFrame *in, *out;
99 } ThreadData;
100 
101 #define OFFSET(x) offsetof(LUT3DContext, x)
102 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
103 #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
104 #define COMMON_OPTIONS \
105  { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, TFLAGS, "interp_mode" }, \
106  { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, 0, 0, TFLAGS, "interp_mode" }, \
107  { "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, 0, 0, TFLAGS, "interp_mode" }, \
108  { "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, 0, TFLAGS, "interp_mode" }, \
109  { "pyramid", "interpolate values using a pyramid", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PYRAMID}, 0, 0, TFLAGS, "interp_mode" }, \
110  { "prism", "interpolate values using a prism", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PRISM}, 0, 0, TFLAGS, "interp_mode" }, \
111  { NULL }
112 
113 #define EXPONENT_MASK 0x7F800000
114 #define MANTISSA_MASK 0x007FFFFF
115 #define SIGN_MASK 0x80000000
116 
117 static inline float sanitizef(float f)
118 {
119  union av_intfloat32 t;
120  t.f = f;
121 
122  if ((t.i & EXPONENT_MASK) == EXPONENT_MASK) {
123  if ((t.i & MANTISSA_MASK) != 0) {
124  // NAN
125  return 0.0f;
126  } else if (t.i & SIGN_MASK) {
127  // -INF
128  return -FLT_MAX;
129  } else {
130  // +INF
131  return FLT_MAX;
132  }
133  }
134  return f;
135 }
136 
137 static inline float lerpf(float v0, float v1, float f)
138 {
139  return v0 + (v1 - v0) * f;
140 }
141 
142 static inline struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
143 {
144  struct rgbvec v = {
145  lerpf(v0->r, v1->r, f), lerpf(v0->g, v1->g, f), lerpf(v0->b, v1->b, f)
146  };
147  return v;
148 }
149 
150 #define NEAR(x) ((int)((x) + .5))
151 #define PREV(x) ((int)(x))
152 #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1))
153 
154 /**
155  * Get the nearest defined point
156  */
157 static inline struct rgbvec interp_nearest(const LUT3DContext *lut3d,
158  const struct rgbvec *s)
159 {
160  return lut3d->lut[NEAR(s->r) * lut3d->lutsize2 + NEAR(s->g) * lut3d->lutsize + NEAR(s->b)];
161 }
162 
163 /**
164  * Interpolate using the 8 vertices of a cube
165  * @see https://en.wikipedia.org/wiki/Trilinear_interpolation
166  */
167 static inline struct rgbvec interp_trilinear(const LUT3DContext *lut3d,
168  const struct rgbvec *s)
169 {
170  const int lutsize2 = lut3d->lutsize2;
171  const int lutsize = lut3d->lutsize;
172  const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
173  const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
174  const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
175  const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
176  const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
177  const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
178  const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
179  const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
180  const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
181  const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
182  const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
183  const struct rgbvec c00 = lerp(&c000, &c100, d.r);
184  const struct rgbvec c10 = lerp(&c010, &c110, d.r);
185  const struct rgbvec c01 = lerp(&c001, &c101, d.r);
186  const struct rgbvec c11 = lerp(&c011, &c111, d.r);
187  const struct rgbvec c0 = lerp(&c00, &c10, d.g);
188  const struct rgbvec c1 = lerp(&c01, &c11, d.g);
189  const struct rgbvec c = lerp(&c0, &c1, d.b);
190  return c;
191 }
192 
193 static inline struct rgbvec interp_pyramid(const LUT3DContext *lut3d,
194  const struct rgbvec *s)
195 {
196  const int lutsize2 = lut3d->lutsize2;
197  const int lutsize = lut3d->lutsize;
198  const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
199  const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
200  const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
201  const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
202  const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
203  struct rgbvec c;
204 
205  if (d.g > d.r && d.b > d.r) {
206  const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
207  const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
208  const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
209 
210  c.r = c000.r + (c111.r - c011.r) * d.r + (c010.r - c000.r) * d.g + (c001.r - c000.r) * d.b +
211  (c011.r - c001.r - c010.r + c000.r) * d.g * d.b;
212  c.g = c000.g + (c111.g - c011.g) * d.r + (c010.g - c000.g) * d.g + (c001.g - c000.g) * d.b +
213  (c011.g - c001.g - c010.g + c000.g) * d.g * d.b;
214  c.b = c000.b + (c111.b - c011.b) * d.r + (c010.b - c000.b) * d.g + (c001.b - c000.b) * d.b +
215  (c011.b - c001.b - c010.b + c000.b) * d.g * d.b;
216  } else if (d.r > d.g && d.b > d.g) {
217  const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
218  const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
219  const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
220 
221  c.r = c000.r + (c100.r - c000.r) * d.r + (c111.r - c101.r) * d.g + (c001.r - c000.r) * d.b +
222  (c101.r - c001.r - c100.r + c000.r) * d.r * d.b;
223  c.g = c000.g + (c100.g - c000.g) * d.r + (c111.g - c101.g) * d.g + (c001.g - c000.g) * d.b +
224  (c101.g - c001.g - c100.g + c000.g) * d.r * d.b;
225  c.b = c000.b + (c100.b - c000.b) * d.r + (c111.b - c101.b) * d.g + (c001.b - c000.b) * d.b +
226  (c101.b - c001.b - c100.b + c000.b) * d.r * d.b;
227  } else {
228  const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
229  const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
230  const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
231 
232  c.r = c000.r + (c100.r - c000.r) * d.r + (c010.r - c000.r) * d.g + (c111.r - c110.r) * d.b +
233  (c110.r - c100.r - c010.r + c000.r) * d.r * d.g;
234  c.g = c000.g + (c100.g - c000.g) * d.r + (c010.g - c000.g) * d.g + (c111.g - c110.g) * d.b +
235  (c110.g - c100.g - c010.g + c000.g) * d.r * d.g;
236  c.b = c000.b + (c100.b - c000.b) * d.r + (c010.b - c000.b) * d.g + (c111.b - c110.b) * d.b +
237  (c110.b - c100.b - c010.b + c000.b) * d.r * d.g;
238  }
239 
240  return c;
241 }
242 
243 static inline struct rgbvec interp_prism(const LUT3DContext *lut3d,
244  const struct rgbvec *s)
245 {
246  const int lutsize2 = lut3d->lutsize2;
247  const int lutsize = lut3d->lutsize;
248  const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
249  const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
250  const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
251  const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
252  const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
253  const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
254  const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
255  struct rgbvec c;
256 
257  if (d.b > d.r) {
258  const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
259  const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
260 
261  c.r = c000.r + (c001.r - c000.r) * d.b + (c101.r - c001.r) * d.r + (c010.r - c000.r) * d.g +
262  (c000.r - c010.r - c001.r + c011.r) * d.b * d.g +
263  (c001.r - c011.r - c101.r + c111.r) * d.r * d.g;
264  c.g = c000.g + (c001.g - c000.g) * d.b + (c101.g - c001.g) * d.r + (c010.g - c000.g) * d.g +
265  (c000.g - c010.g - c001.g + c011.g) * d.b * d.g +
266  (c001.g - c011.g - c101.g + c111.g) * d.r * d.g;
267  c.b = c000.b + (c001.b - c000.b) * d.b + (c101.b - c001.b) * d.r + (c010.b - c000.b) * d.g +
268  (c000.b - c010.b - c001.b + c011.b) * d.b * d.g +
269  (c001.b - c011.b - c101.b + c111.b) * d.r * d.g;
270  } else {
271  const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
272  const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
273 
274  c.r = c000.r + (c101.r - c100.r) * d.b + (c100.r - c000.r) * d.r + (c010.r - c000.r) * d.g +
275  (c100.r - c110.r - c101.r + c111.r) * d.b * d.g +
276  (c000.r - c010.r - c100.r + c110.r) * d.r * d.g;
277  c.g = c000.g + (c101.g - c100.g) * d.b + (c100.g - c000.g) * d.r + (c010.g - c000.g) * d.g +
278  (c100.g - c110.g - c101.g + c111.g) * d.b * d.g +
279  (c000.g - c010.g - c100.g + c110.g) * d.r * d.g;
280  c.b = c000.b + (c101.b - c100.b) * d.b + (c100.b - c000.b) * d.r + (c010.b - c000.b) * d.g +
281  (c100.b - c110.b - c101.b + c111.b) * d.b * d.g +
282  (c000.b - c010.b - c100.b + c110.b) * d.r * d.g;
283  }
284 
285  return c;
286 }
287 
288 /**
289  * Tetrahedral interpolation. Based on code found in Truelight Software Library paper.
290  * @see http://www.filmlight.ltd.uk/pdf/whitepapers/FL-TL-TN-0057-SoftwareLib.pdf
291  */
292 static inline struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d,
293  const struct rgbvec *s)
294 {
295  const int lutsize2 = lut3d->lutsize2;
296  const int lutsize = lut3d->lutsize;
297  const int prev[] = {PREV(s->r), PREV(s->g), PREV(s->b)};
298  const int next[] = {NEXT(s->r), NEXT(s->g), NEXT(s->b)};
299  const struct rgbvec d = {s->r - prev[0], s->g - prev[1], s->b - prev[2]};
300  const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
301  const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
302  struct rgbvec c;
303  if (d.r > d.g) {
304  if (d.g > d.b) {
305  const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
306  const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
307  c.r = (1-d.r) * c000.r + (d.r-d.g) * c100.r + (d.g-d.b) * c110.r + (d.b) * c111.r;
308  c.g = (1-d.r) * c000.g + (d.r-d.g) * c100.g + (d.g-d.b) * c110.g + (d.b) * c111.g;
309  c.b = (1-d.r) * c000.b + (d.r-d.g) * c100.b + (d.g-d.b) * c110.b + (d.b) * c111.b;
310  } else if (d.r > d.b) {
311  const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
312  const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
313  c.r = (1-d.r) * c000.r + (d.r-d.b) * c100.r + (d.b-d.g) * c101.r + (d.g) * c111.r;
314  c.g = (1-d.r) * c000.g + (d.r-d.b) * c100.g + (d.b-d.g) * c101.g + (d.g) * c111.g;
315  c.b = (1-d.r) * c000.b + (d.r-d.b) * c100.b + (d.b-d.g) * c101.b + (d.g) * c111.b;
316  } else {
317  const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
318  const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
319  c.r = (1-d.b) * c000.r + (d.b-d.r) * c001.r + (d.r-d.g) * c101.r + (d.g) * c111.r;
320  c.g = (1-d.b) * c000.g + (d.b-d.r) * c001.g + (d.r-d.g) * c101.g + (d.g) * c111.g;
321  c.b = (1-d.b) * c000.b + (d.b-d.r) * c001.b + (d.r-d.g) * c101.b + (d.g) * c111.b;
322  }
323  } else {
324  if (d.b > d.g) {
325  const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
326  const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
327  c.r = (1-d.b) * c000.r + (d.b-d.g) * c001.r + (d.g-d.r) * c011.r + (d.r) * c111.r;
328  c.g = (1-d.b) * c000.g + (d.b-d.g) * c001.g + (d.g-d.r) * c011.g + (d.r) * c111.g;
329  c.b = (1-d.b) * c000.b + (d.b-d.g) * c001.b + (d.g-d.r) * c011.b + (d.r) * c111.b;
330  } else if (d.b > d.r) {
331  const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
332  const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
333  c.r = (1-d.g) * c000.r + (d.g-d.b) * c010.r + (d.b-d.r) * c011.r + (d.r) * c111.r;
334  c.g = (1-d.g) * c000.g + (d.g-d.b) * c010.g + (d.b-d.r) * c011.g + (d.r) * c111.g;
335  c.b = (1-d.g) * c000.b + (d.g-d.b) * c010.b + (d.b-d.r) * c011.b + (d.r) * c111.b;
336  } else {
337  const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
338  const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
339  c.r = (1-d.g) * c000.r + (d.g-d.r) * c010.r + (d.r-d.b) * c110.r + (d.b) * c111.r;
340  c.g = (1-d.g) * c000.g + (d.g-d.r) * c010.g + (d.r-d.b) * c110.g + (d.b) * c111.g;
341  c.b = (1-d.g) * c000.b + (d.g-d.r) * c010.b + (d.r-d.b) * c110.b + (d.b) * c111.b;
342  }
343  }
344  return c;
345 }
346 
347 static inline float prelut_interp_1d_linear(const Lut3DPreLut *prelut,
348  int idx, const float s)
349 {
350  const int lut_max = prelut->size - 1;
351  const float scaled = (s - prelut->min[idx]) * prelut->scale[idx];
352  const float x = av_clipf(scaled, 0.0f, lut_max);
353  const int prev = PREV(x);
354  const int next = FFMIN((int)(x) + 1, lut_max);
355  const float p = prelut->lut[idx][prev];
356  const float n = prelut->lut[idx][next];
357  const float d = x - (float)prev;
358  return lerpf(p, n, d);
359 }
360 
361 static inline struct rgbvec apply_prelut(const Lut3DPreLut *prelut,
362  const struct rgbvec *s)
363 {
364  struct rgbvec c;
365 
366  if (prelut->size <= 0)
367  return *s;
368 
369  c.r = prelut_interp_1d_linear(prelut, 0, s->r);
370  c.g = prelut_interp_1d_linear(prelut, 1, s->g);
371  c.b = prelut_interp_1d_linear(prelut, 2, s->b);
372  return c;
373 }
374 
375 #define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth) \
376 static int interp_##nbits##_##name##_p##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
377 { \
378  int x, y; \
379  const LUT3DContext *lut3d = ctx->priv; \
380  const Lut3DPreLut *prelut = &lut3d->prelut; \
381  const ThreadData *td = arg; \
382  const AVFrame *in = td->in; \
383  const AVFrame *out = td->out; \
384  const int direct = out == in; \
385  const int slice_start = (in->height * jobnr ) / nb_jobs; \
386  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
387  uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
388  uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
389  uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
390  uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
391  const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
392  const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
393  const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
394  const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
395  const float lut_max = lut3d->lutsize - 1; \
396  const float scale_f = 1.0f / ((1<<depth) - 1); \
397  const float scale_r = lut3d->scale.r * lut_max; \
398  const float scale_g = lut3d->scale.g * lut_max; \
399  const float scale_b = lut3d->scale.b * lut_max; \
400  \
401  for (y = slice_start; y < slice_end; y++) { \
402  uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
403  uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
404  uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
405  uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
406  const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
407  const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
408  const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
409  const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
410  for (x = 0; x < in->width; x++) { \
411  const struct rgbvec rgb = {srcr[x] * scale_f, \
412  srcg[x] * scale_f, \
413  srcb[x] * scale_f}; \
414  const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
415  const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
416  av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
417  av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
418  struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
419  dstr[x] = av_clip_uintp2(vec.r * (float)((1<<depth) - 1), depth); \
420  dstg[x] = av_clip_uintp2(vec.g * (float)((1<<depth) - 1), depth); \
421  dstb[x] = av_clip_uintp2(vec.b * (float)((1<<depth) - 1), depth); \
422  if (!direct && in->linesize[3]) \
423  dsta[x] = srca[x]; \
424  } \
425  grow += out->linesize[0]; \
426  brow += out->linesize[1]; \
427  rrow += out->linesize[2]; \
428  arow += out->linesize[3]; \
429  srcgrow += in->linesize[0]; \
430  srcbrow += in->linesize[1]; \
431  srcrrow += in->linesize[2]; \
432  srcarow += in->linesize[3]; \
433  } \
434  return 0; \
435 }
436 
437 DEFINE_INTERP_FUNC_PLANAR(nearest, 8, 8)
438 DEFINE_INTERP_FUNC_PLANAR(trilinear, 8, 8)
439 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 8, 8)
440 DEFINE_INTERP_FUNC_PLANAR(pyramid, 8, 8)
441 DEFINE_INTERP_FUNC_PLANAR(prism, 8, 8)
442 
443 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 9)
444 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 9)
445 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 9)
446 DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 9)
447 DEFINE_INTERP_FUNC_PLANAR(prism, 16, 9)
448 
449 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 10)
450 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 10)
451 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 10)
452 DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 10)
453 DEFINE_INTERP_FUNC_PLANAR(prism, 16, 10)
454 
455 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 12)
456 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 12)
457 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 12)
458 DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 12)
459 DEFINE_INTERP_FUNC_PLANAR(prism, 16, 12)
460 
461 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 14)
462 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 14)
463 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 14)
464 DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 14)
465 DEFINE_INTERP_FUNC_PLANAR(prism, 16, 14)
466 
467 DEFINE_INTERP_FUNC_PLANAR(nearest, 16, 16)
468 DEFINE_INTERP_FUNC_PLANAR(trilinear, 16, 16)
469 DEFINE_INTERP_FUNC_PLANAR(tetrahedral, 16, 16)
470 DEFINE_INTERP_FUNC_PLANAR(pyramid, 16, 16)
471 DEFINE_INTERP_FUNC_PLANAR(prism, 16, 16)
472 
473 #define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth) \
474 static int interp_##name##_pf##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
475 { \
476  int x, y; \
477  const LUT3DContext *lut3d = ctx->priv; \
478  const Lut3DPreLut *prelut = &lut3d->prelut; \
479  const ThreadData *td = arg; \
480  const AVFrame *in = td->in; \
481  const AVFrame *out = td->out; \
482  const int direct = out == in; \
483  const int slice_start = (in->height * jobnr ) / nb_jobs; \
484  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
485  uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
486  uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
487  uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
488  uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
489  const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
490  const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
491  const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
492  const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
493  const float lut_max = lut3d->lutsize - 1; \
494  const float scale_r = lut3d->scale.r * lut_max; \
495  const float scale_g = lut3d->scale.g * lut_max; \
496  const float scale_b = lut3d->scale.b * lut_max; \
497  \
498  for (y = slice_start; y < slice_end; y++) { \
499  float *dstg = (float *)grow; \
500  float *dstb = (float *)brow; \
501  float *dstr = (float *)rrow; \
502  float *dsta = (float *)arow; \
503  const float *srcg = (const float *)srcgrow; \
504  const float *srcb = (const float *)srcbrow; \
505  const float *srcr = (const float *)srcrrow; \
506  const float *srca = (const float *)srcarow; \
507  for (x = 0; x < in->width; x++) { \
508  const struct rgbvec rgb = {sanitizef(srcr[x]), \
509  sanitizef(srcg[x]), \
510  sanitizef(srcb[x])}; \
511  const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
512  const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
513  av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
514  av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
515  struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
516  dstr[x] = vec.r; \
517  dstg[x] = vec.g; \
518  dstb[x] = vec.b; \
519  if (!direct && in->linesize[3]) \
520  dsta[x] = srca[x]; \
521  } \
522  grow += out->linesize[0]; \
523  brow += out->linesize[1]; \
524  rrow += out->linesize[2]; \
525  arow += out->linesize[3]; \
526  srcgrow += in->linesize[0]; \
527  srcbrow += in->linesize[1]; \
528  srcrrow += in->linesize[2]; \
529  srcarow += in->linesize[3]; \
530  } \
531  return 0; \
532 }
533 
535 DEFINE_INTERP_FUNC_PLANAR_FLOAT(trilinear, 32)
536 DEFINE_INTERP_FUNC_PLANAR_FLOAT(tetrahedral, 32)
539 
540 #define DEFINE_INTERP_FUNC(name, nbits) \
541 static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
542 { \
543  int x, y; \
544  const LUT3DContext *lut3d = ctx->priv; \
545  const Lut3DPreLut *prelut = &lut3d->prelut; \
546  const ThreadData *td = arg; \
547  const AVFrame *in = td->in; \
548  const AVFrame *out = td->out; \
549  const int direct = out == in; \
550  const int step = lut3d->step; \
551  const uint8_t r = lut3d->rgba_map[R]; \
552  const uint8_t g = lut3d->rgba_map[G]; \
553  const uint8_t b = lut3d->rgba_map[B]; \
554  const uint8_t a = lut3d->rgba_map[A]; \
555  const int slice_start = (in->height * jobnr ) / nb_jobs; \
556  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
557  uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
558  const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
559  const float lut_max = lut3d->lutsize - 1; \
560  const float scale_f = 1.0f / ((1<<nbits) - 1); \
561  const float scale_r = lut3d->scale.r * lut_max; \
562  const float scale_g = lut3d->scale.g * lut_max; \
563  const float scale_b = lut3d->scale.b * lut_max; \
564  \
565  for (y = slice_start; y < slice_end; y++) { \
566  uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
567  const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
568  for (x = 0; x < in->width * step; x += step) { \
569  const struct rgbvec rgb = {src[x + r] * scale_f, \
570  src[x + g] * scale_f, \
571  src[x + b] * scale_f}; \
572  const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
573  const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
574  av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
575  av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
576  struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
577  dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \
578  dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \
579  dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \
580  if (!direct && step == 4) \
581  dst[x + a] = src[x + a]; \
582  } \
583  dstrow += out->linesize[0]; \
584  srcrow += in ->linesize[0]; \
585  } \
586  return 0; \
587 }
588 
589 DEFINE_INTERP_FUNC(nearest, 8)
590 DEFINE_INTERP_FUNC(trilinear, 8)
591 DEFINE_INTERP_FUNC(tetrahedral, 8)
592 DEFINE_INTERP_FUNC(pyramid, 8)
593 DEFINE_INTERP_FUNC(prism, 8)
594 
595 DEFINE_INTERP_FUNC(nearest, 16)
596 DEFINE_INTERP_FUNC(trilinear, 16)
597 DEFINE_INTERP_FUNC(tetrahedral, 16)
598 DEFINE_INTERP_FUNC(pyramid, 16)
599 DEFINE_INTERP_FUNC(prism, 16)
600 
601 #define MAX_LINE_SIZE 512
602 
603 static int skip_line(const char *p)
604 {
605  while (*p && av_isspace(*p))
606  p++;
607  return !*p || *p == '#';
608 }
609 
610 static char* fget_next_word(char* dst, int max, FILE* f)
611 {
612  int c;
613  char *p = dst;
614 
615  /* for null */
616  max--;
617  /* skip until next non whitespace char */
618  while ((c = fgetc(f)) != EOF) {
619  if (av_isspace(c))
620  continue;
621 
622  *p++ = c;
623  max--;
624  break;
625  }
626 
627  /* get max bytes or up until next whitespace char */
628  for (; max > 0; max--) {
629  if ((c = fgetc(f)) == EOF)
630  break;
631 
632  if (av_isspace(c))
633  break;
634 
635  *p++ = c;
636  }
637 
638  *p = 0;
639  if (p == dst)
640  return NULL;
641  return p;
642 }
643 
644 #define NEXT_LINE(loop_cond) do { \
645  if (!fgets(line, sizeof(line), f)) { \
646  av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
647  return AVERROR_INVALIDDATA; \
648  } \
649 } while (loop_cond)
650 
651 #define NEXT_LINE_OR_GOTO(loop_cond, label) do { \
652  if (!fgets(line, sizeof(line), f)) { \
653  av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
654  ret = AVERROR_INVALIDDATA; \
655  goto label; \
656  } \
657 } while (loop_cond)
658 
659 static int allocate_3dlut(AVFilterContext *ctx, int lutsize, int prelut)
660 {
661  LUT3DContext *lut3d = ctx->priv;
662  int i;
663  if (lutsize < 2 || lutsize > MAX_LEVEL) {
664  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 3D LUT size\n");
665  return AVERROR(EINVAL);
666  }
667 
668  av_freep(&lut3d->lut);
669  lut3d->lut = av_malloc_array(lutsize * lutsize * lutsize, sizeof(*lut3d->lut));
670  if (!lut3d->lut)
671  return AVERROR(ENOMEM);
672 
673  if (prelut) {
674  lut3d->prelut.size = PRELUT_SIZE;
675  for (i = 0; i < 3; i++) {
676  av_freep(&lut3d->prelut.lut[i]);
677  lut3d->prelut.lut[i] = av_malloc_array(PRELUT_SIZE, sizeof(*lut3d->prelut.lut[0]));
678  if (!lut3d->prelut.lut[i])
679  return AVERROR(ENOMEM);
680  }
681  } else {
682  lut3d->prelut.size = 0;
683  for (i = 0; i < 3; i++) {
684  av_freep(&lut3d->prelut.lut[i]);
685  }
686  }
687  lut3d->lutsize = lutsize;
688  lut3d->lutsize2 = lutsize * lutsize;
689  return 0;
690 }
691 
692 /* Basically r g and b float values on each line, with a facultative 3DLUTSIZE
693  * directive; seems to be generated by Davinci */
694 static int parse_dat(AVFilterContext *ctx, FILE *f)
695 {
696  LUT3DContext *lut3d = ctx->priv;
697  char line[MAX_LINE_SIZE];
698  int ret, i, j, k, size, size2;
699 
700  lut3d->lutsize = size = 33;
701  size2 = size * size;
702 
704  if (!strncmp(line, "3DLUTSIZE ", 10)) {
705  size = strtol(line + 10, NULL, 0);
706 
708  }
709 
710  ret = allocate_3dlut(ctx, size, 0);
711  if (ret < 0)
712  return ret;
713 
714  for (k = 0; k < size; k++) {
715  for (j = 0; j < size; j++) {
716  for (i = 0; i < size; i++) {
717  struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
718  if (k != 0 || j != 0 || i != 0)
720  if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
721  return AVERROR_INVALIDDATA;
722  }
723  }
724  }
725  return 0;
726 }
727 
728 /* Iridas format */
729 static int parse_cube(AVFilterContext *ctx, FILE *f)
730 {
731  LUT3DContext *lut3d = ctx->priv;
732  char line[MAX_LINE_SIZE];
733  float min[3] = {0.0, 0.0, 0.0};
734  float max[3] = {1.0, 1.0, 1.0};
735 
736  while (fgets(line, sizeof(line), f)) {
737  if (!strncmp(line, "LUT_3D_SIZE", 11)) {
738  int ret, i, j, k;
739  const int size = strtol(line + 12, NULL, 0);
740  const int size2 = size * size;
741 
742  ret = allocate_3dlut(ctx, size, 0);
743  if (ret < 0)
744  return ret;
745 
746  for (k = 0; k < size; k++) {
747  for (j = 0; j < size; j++) {
748  for (i = 0; i < size; i++) {
749  struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k];
750 
751  do {
752 try_again:
753  NEXT_LINE(0);
754  if (!strncmp(line, "DOMAIN_", 7)) {
755  float *vals = NULL;
756  if (!strncmp(line + 7, "MIN ", 4)) vals = min;
757  else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
758  if (!vals)
759  return AVERROR_INVALIDDATA;
760  av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2);
761  av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
762  min[0], min[1], min[2], max[0], max[1], max[2]);
763  goto try_again;
764  } else if (!strncmp(line, "TITLE", 5)) {
765  goto try_again;
766  }
767  } while (skip_line(line));
768  if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3)
769  return AVERROR_INVALIDDATA;
770  }
771  }
772  }
773  break;
774  }
775  }
776 
777  lut3d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f);
778  lut3d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f);
779  lut3d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f);
780 
781  return 0;
782 }
783 
784 /* Assume 17x17x17 LUT with a 16-bit depth
785  * FIXME: it seems there are various 3dl formats */
786 static int parse_3dl(AVFilterContext *ctx, FILE *f)
787 {
788  char line[MAX_LINE_SIZE];
789  LUT3DContext *lut3d = ctx->priv;
790  int ret, i, j, k;
791  const int size = 17;
792  const int size2 = 17 * 17;
793  const float scale = 16*16*16;
794 
795  lut3d->lutsize = size;
796 
797  ret = allocate_3dlut(ctx, size, 0);
798  if (ret < 0)
799  return ret;
800 
802  for (k = 0; k < size; k++) {
803  for (j = 0; j < size; j++) {
804  for (i = 0; i < size; i++) {
805  int r, g, b;
806  struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
807 
809  if (av_sscanf(line, "%d %d %d", &r, &g, &b) != 3)
810  return AVERROR_INVALIDDATA;
811  vec->r = r / scale;
812  vec->g = g / scale;
813  vec->b = b / scale;
814  }
815  }
816  }
817  return 0;
818 }
819 
820 /* Pandora format */
821 static int parse_m3d(AVFilterContext *ctx, FILE *f)
822 {
823  LUT3DContext *lut3d = ctx->priv;
824  float scale;
825  int ret, i, j, k, size, size2, in = -1, out = -1;
826  char line[MAX_LINE_SIZE];
827  uint8_t rgb_map[3] = {0, 1, 2};
828 
829  while (fgets(line, sizeof(line), f)) {
830  if (!strncmp(line, "in", 2)) in = strtol(line + 2, NULL, 0);
831  else if (!strncmp(line, "out", 3)) out = strtol(line + 3, NULL, 0);
832  else if (!strncmp(line, "values", 6)) {
833  const char *p = line + 6;
834 #define SET_COLOR(id) do { \
835  while (av_isspace(*p)) \
836  p++; \
837  switch (*p) { \
838  case 'r': rgb_map[id] = 0; break; \
839  case 'g': rgb_map[id] = 1; break; \
840  case 'b': rgb_map[id] = 2; break; \
841  } \
842  while (*p && !av_isspace(*p)) \
843  p++; \
844 } while (0)
845  SET_COLOR(0);
846  SET_COLOR(1);
847  SET_COLOR(2);
848  break;
849  }
850  }
851 
852  if (in == -1 || out == -1) {
853  av_log(ctx, AV_LOG_ERROR, "in and out must be defined\n");
854  return AVERROR_INVALIDDATA;
855  }
856  if (in < 2 || out < 2 ||
859  av_log(ctx, AV_LOG_ERROR, "invalid in (%d) or out (%d)\n", in, out);
860  return AVERROR_INVALIDDATA;
861  }
862  for (size = 1; size*size*size < in; size++);
863  lut3d->lutsize = size;
864  size2 = size * size;
865 
866  ret = allocate_3dlut(ctx, size, 0);
867  if (ret < 0)
868  return ret;
869 
870  scale = 1. / (out - 1);
871 
872  for (k = 0; k < size; k++) {
873  for (j = 0; j < size; j++) {
874  for (i = 0; i < size; i++) {
875  struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
876  float val[3];
877 
878  NEXT_LINE(0);
879  if (av_sscanf(line, "%f %f %f", val, val + 1, val + 2) != 3)
880  return AVERROR_INVALIDDATA;
881  vec->r = val[rgb_map[0]] * scale;
882  vec->g = val[rgb_map[1]] * scale;
883  vec->b = val[rgb_map[2]] * scale;
884  }
885  }
886  }
887  return 0;
888 }
889 
890 static int nearest_sample_index(float *data, float x, int low, int hi)
891 {
892  int mid;
893  if (x < data[low])
894  return low;
895 
896  if (x > data[hi])
897  return hi;
898 
899  for (;;) {
900  av_assert0(x >= data[low]);
901  av_assert0(x <= data[hi]);
902  av_assert0((hi-low) > 0);
903 
904  if (hi - low == 1)
905  return low;
906 
907  mid = (low + hi) / 2;
908 
909  if (x < data[mid])
910  hi = mid;
911  else
912  low = mid;
913  }
914 
915  return 0;
916 }
917 
918 #define NEXT_FLOAT_OR_GOTO(value, label) \
919  if (!fget_next_word(line, sizeof(line) ,f)) { \
920  ret = AVERROR_INVALIDDATA; \
921  goto label; \
922  } \
923  if (av_sscanf(line, "%f", &value) != 1) { \
924  ret = AVERROR_INVALIDDATA; \
925  goto label; \
926  }
927 
929 {
930  LUT3DContext *lut3d = ctx->priv;
931  char line[MAX_LINE_SIZE];
932  float in_min[3] = {0.0, 0.0, 0.0};
933  float in_max[3] = {1.0, 1.0, 1.0};
934  float out_min[3] = {0.0, 0.0, 0.0};
935  float out_max[3] = {1.0, 1.0, 1.0};
936  int inside_metadata = 0, size, size2;
937  int prelut = 0;
938  int ret = 0;
939 
940  int prelut_sizes[3] = {0, 0, 0};
941  float *in_prelut[3] = {NULL, NULL, NULL};
942  float *out_prelut[3] = {NULL, NULL, NULL};
943 
945  if (strncmp(line, "CSPLUTV100", 10)) {
946  av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n");
947  ret = AVERROR(EINVAL);
948  goto end;
949  }
950 
952  if (strncmp(line, "3D", 2)) {
953  av_log(ctx, AV_LOG_ERROR, "Not 3D LUT format\n");
954  ret = AVERROR(EINVAL);
955  goto end;
956  }
957 
958  while (1) {
960 
961  if (!strncmp(line, "BEGIN METADATA", 14)) {
962  inside_metadata = 1;
963  continue;
964  }
965  if (!strncmp(line, "END METADATA", 12)) {
966  inside_metadata = 0;
967  continue;
968  }
969  if (inside_metadata == 0) {
970  int size_r, size_g, size_b;
971 
972  for (int i = 0; i < 3; i++) {
973  int npoints = strtol(line, NULL, 0);
974 
975  if (npoints > 2) {
976  float v,last;
977 
978  if (npoints > PRELUT_SIZE) {
979  av_log(ctx, AV_LOG_ERROR, "Prelut size too large.\n");
980  ret = AVERROR_INVALIDDATA;
981  goto end;
982  }
983 
984  if (in_prelut[i] || out_prelut[i]) {
985  av_log(ctx, AV_LOG_ERROR, "Invalid file has multiple preluts.\n");
986  ret = AVERROR_INVALIDDATA;
987  goto end;
988  }
989 
990  in_prelut[i] = (float*)av_malloc(npoints * sizeof(float));
991  out_prelut[i] = (float*)av_malloc(npoints * sizeof(float));
992  if (!in_prelut[i] || !out_prelut[i]) {
993  ret = AVERROR(ENOMEM);
994  goto end;
995  }
996 
997  prelut_sizes[i] = npoints;
998  in_min[i] = FLT_MAX;
999  in_max[i] = -FLT_MAX;
1000  out_min[i] = FLT_MAX;
1001  out_max[i] = -FLT_MAX;
1002 
1003  for (int j = 0; j < npoints; j++) {
1004  NEXT_FLOAT_OR_GOTO(v, end)
1005  in_min[i] = FFMIN(in_min[i], v);
1006  in_max[i] = FFMAX(in_max[i], v);
1007  in_prelut[i][j] = v;
1008  if (j > 0 && v < last) {
1009  av_log(ctx, AV_LOG_ERROR, "Invalid file, non increasing prelut.\n");
1010  ret = AVERROR(ENOMEM);
1011  goto end;
1012  }
1013  last = v;
1014  }
1015 
1016  for (int j = 0; j < npoints; j++) {
1017  NEXT_FLOAT_OR_GOTO(v, end)
1018  out_min[i] = FFMIN(out_min[i], v);
1019  out_max[i] = FFMAX(out_max[i], v);
1020  out_prelut[i][j] = v;
1021  }
1022 
1023  } else if (npoints == 2) {
1025  if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2) {
1026  ret = AVERROR_INVALIDDATA;
1027  goto end;
1028  }
1030  if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2) {
1031  ret = AVERROR_INVALIDDATA;
1032  goto end;
1033  }
1034 
1035  } else {
1036  av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n");
1037  ret = AVERROR_PATCHWELCOME;
1038  goto end;
1039  }
1040 
1042  }
1043 
1044  if (av_sscanf(line, "%d %d %d", &size_r, &size_g, &size_b) != 3) {
1045  ret = AVERROR(EINVAL);
1046  goto end;
1047  }
1048  if (size_r != size_g || size_r != size_b) {
1049  av_log(ctx, AV_LOG_ERROR, "Unsupported size combination: %dx%dx%d.\n", size_r, size_g, size_b);
1050  ret = AVERROR_PATCHWELCOME;
1051  goto end;
1052  }
1053 
1054  size = size_r;
1055  size2 = size * size;
1056 
1057  if (prelut_sizes[0] && prelut_sizes[1] && prelut_sizes[2])
1058  prelut = 1;
1059 
1060  ret = allocate_3dlut(ctx, size, prelut);
1061  if (ret < 0)
1062  return ret;
1063 
1064  for (int k = 0; k < size; k++) {
1065  for (int j = 0; j < size; j++) {
1066  for (int i = 0; i < size; i++) {
1067  struct rgbvec *vec = &lut3d->lut[i * size2 + j * size + k];
1068 
1070  if (av_sscanf(line, "%f %f %f", &vec->r, &vec->g, &vec->b) != 3) {
1071  ret = AVERROR_INVALIDDATA;
1072  goto end;
1073  }
1074 
1075  vec->r *= out_max[0] - out_min[0];
1076  vec->g *= out_max[1] - out_min[1];
1077  vec->b *= out_max[2] - out_min[2];
1078  }
1079  }
1080  }
1081 
1082  break;
1083  }
1084  }
1085 
1086  if (prelut) {
1087  for (int c = 0; c < 3; c++) {
1088 
1089  lut3d->prelut.min[c] = in_min[c];
1090  lut3d->prelut.max[c] = in_max[c];
1091  lut3d->prelut.scale[c] = (1.0f / (float)(in_max[c] - in_min[c])) * (lut3d->prelut.size - 1);
1092 
1093  for (int i = 0; i < lut3d->prelut.size; ++i) {
1094  float mix = (float) i / (float)(lut3d->prelut.size - 1);
1095  float x = lerpf(in_min[c], in_max[c], mix), a, b;
1096 
1097  int idx = nearest_sample_index(in_prelut[c], x, 0, prelut_sizes[c]-1);
1098  av_assert0(idx + 1 < prelut_sizes[c]);
1099 
1100  a = out_prelut[c][idx + 0];
1101  b = out_prelut[c][idx + 1];
1102  mix = x - in_prelut[c][idx];
1103 
1104  lut3d->prelut.lut[c][i] = sanitizef(lerpf(a, b, mix));
1105  }
1106  }
1107  lut3d->scale.r = 1.00f;
1108  lut3d->scale.g = 1.00f;
1109  lut3d->scale.b = 1.00f;
1110 
1111  } else {
1112  lut3d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
1113  lut3d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
1114  lut3d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
1115  }
1116 
1117 end:
1118  for (int c = 0; c < 3; c++) {
1119  av_freep(&in_prelut[c]);
1120  av_freep(&out_prelut[c]);
1121  }
1122  return ret;
1123 }
1124 
1126 {
1127  LUT3DContext *lut3d = ctx->priv;
1128  int ret, i, j, k;
1129  const int size2 = size * size;
1130  const float c = 1. / (size - 1);
1131 
1132  ret = allocate_3dlut(ctx, size, 0);
1133  if (ret < 0)
1134  return ret;
1135 
1136  for (k = 0; k < size; k++) {
1137  for (j = 0; j < size; j++) {
1138  for (i = 0; i < size; i++) {
1139  struct rgbvec *vec = &lut3d->lut[k * size2 + j * size + i];
1140  vec->r = k * c;
1141  vec->g = j * c;
1142  vec->b = i * c;
1143  }
1144  }
1145  }
1146 
1147  return 0;
1148 }
1149 
1151 {
1152  static const enum AVPixelFormat pix_fmts[] = {
1168  };
1170  if (!fmts_list)
1171  return AVERROR(ENOMEM);
1172  return ff_set_common_formats(ctx, fmts_list);
1173 }
1174 
1175 static int config_input(AVFilterLink *inlink)
1176 {
1177  int depth, is16bit, isfloat, planar;
1178  LUT3DContext *lut3d = inlink->dst->priv;
1180 
1181  depth = desc->comp[0].depth;
1182  is16bit = desc->comp[0].depth > 8;
1183  planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
1184  isfloat = desc->flags & AV_PIX_FMT_FLAG_FLOAT;
1185  ff_fill_rgba_map(lut3d->rgba_map, inlink->format);
1186  lut3d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit);
1187 
1188 #define SET_FUNC(name) do { \
1189  if (planar && !isfloat) { \
1190  switch (depth) { \
1191  case 8: lut3d->interp = interp_8_##name##_p8; break; \
1192  case 9: lut3d->interp = interp_16_##name##_p9; break; \
1193  case 10: lut3d->interp = interp_16_##name##_p10; break; \
1194  case 12: lut3d->interp = interp_16_##name##_p12; break; \
1195  case 14: lut3d->interp = interp_16_##name##_p14; break; \
1196  case 16: lut3d->interp = interp_16_##name##_p16; break; \
1197  } \
1198  } else if (isfloat) { lut3d->interp = interp_##name##_pf32; \
1199  } else if (is16bit) { lut3d->interp = interp_16_##name; \
1200  } else { lut3d->interp = interp_8_##name; } \
1201 } while (0)
1202 
1203  switch (lut3d->interpolation) {
1204  case INTERPOLATE_NEAREST: SET_FUNC(nearest); break;
1205  case INTERPOLATE_TRILINEAR: SET_FUNC(trilinear); break;
1206  case INTERPOLATE_TETRAHEDRAL: SET_FUNC(tetrahedral); break;
1207  case INTERPOLATE_PYRAMID: SET_FUNC(pyramid); break;
1208  case INTERPOLATE_PRISM: SET_FUNC(prism); break;
1209  default:
1210  av_assert0(0);
1211  }
1212 
1213  return 0;
1214 }
1215 
1217 {
1218  AVFilterContext *ctx = inlink->dst;
1219  LUT3DContext *lut3d = ctx->priv;
1220  AVFilterLink *outlink = inlink->dst->outputs[0];
1221  AVFrame *out;
1222  ThreadData td;
1223 
1224  if (av_frame_is_writable(in)) {
1225  out = in;
1226  } else {
1227  out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
1228  if (!out) {
1229  av_frame_free(&in);
1230  return NULL;
1231  }
1233  }
1234 
1235  td.in = in;
1236  td.out = out;
1237  ctx->internal->execute(ctx, lut3d->interp, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
1238 
1239  if (out != in)
1240  av_frame_free(&in);
1241 
1242  return out;
1243 }
1244 
1245 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
1246 {
1247  AVFilterLink *outlink = inlink->dst->outputs[0];
1248  AVFrame *out = apply_lut(inlink, in);
1249  if (!out)
1250  return AVERROR(ENOMEM);
1251  return ff_filter_frame(outlink, out);
1252 }
1253 
1254 static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
1255  char *res, int res_len, int flags)
1256 {
1257  int ret;
1258 
1259  ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
1260  if (ret < 0)
1261  return ret;
1262 
1263  return config_input(ctx->inputs[0]);
1264 }
1265 
1266 #if CONFIG_LUT3D_FILTER
1267 static const AVOption lut3d_options[] = {
1268  { "file", "set 3D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = FLAGS },
1270 };
1271 
1272 AVFILTER_DEFINE_CLASS(lut3d);
1273 
1274 static av_cold int lut3d_init(AVFilterContext *ctx)
1275 {
1276  int ret;
1277  FILE *f;
1278  const char *ext;
1279  LUT3DContext *lut3d = ctx->priv;
1280 
1281  lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f;
1282 
1283  if (!lut3d->file) {
1284  return set_identity_matrix(ctx, 32);
1285  }
1286 
1287  f = av_fopen_utf8(lut3d->file, "r");
1288  if (!f) {
1289  ret = AVERROR(errno);
1290  av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut3d->file, av_err2str(ret));
1291  return ret;
1292  }
1293 
1294  ext = strrchr(lut3d->file, '.');
1295  if (!ext) {
1296  av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
1297  ret = AVERROR_INVALIDDATA;
1298  goto end;
1299  }
1300  ext++;
1301 
1302  if (!av_strcasecmp(ext, "dat")) {
1303  ret = parse_dat(ctx, f);
1304  } else if (!av_strcasecmp(ext, "3dl")) {
1305  ret = parse_3dl(ctx, f);
1306  } else if (!av_strcasecmp(ext, "cube")) {
1307  ret = parse_cube(ctx, f);
1308  } else if (!av_strcasecmp(ext, "m3d")) {
1309  ret = parse_m3d(ctx, f);
1310  } else if (!av_strcasecmp(ext, "csp")) {
1311  ret = parse_cinespace(ctx, f);
1312  } else {
1313  av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
1314  ret = AVERROR(EINVAL);
1315  }
1316 
1317  if (!ret && !lut3d->lutsize) {
1318  av_log(ctx, AV_LOG_ERROR, "3D LUT is empty\n");
1319  ret = AVERROR_INVALIDDATA;
1320  }
1321 
1322 end:
1323  fclose(f);
1324  return ret;
1325 }
1326 
1327 static av_cold void lut3d_uninit(AVFilterContext *ctx)
1328 {
1329  LUT3DContext *lut3d = ctx->priv;
1330  int i;
1331  av_freep(&lut3d->lut);
1332 
1333  for (i = 0; i < 3; i++) {
1334  av_freep(&lut3d->prelut.lut[i]);
1335  }
1336 }
1337 
1338 static const AVFilterPad lut3d_inputs[] = {
1339  {
1340  .name = "default",
1341  .type = AVMEDIA_TYPE_VIDEO,
1342  .filter_frame = filter_frame,
1343  .config_props = config_input,
1344  },
1345  { NULL }
1346 };
1347 
1348 static const AVFilterPad lut3d_outputs[] = {
1349  {
1350  .name = "default",
1351  .type = AVMEDIA_TYPE_VIDEO,
1352  },
1353  { NULL }
1354 };
1355 
1357  .name = "lut3d",
1358  .description = NULL_IF_CONFIG_SMALL("Adjust colors using a 3D LUT."),
1359  .priv_size = sizeof(LUT3DContext),
1360  .init = lut3d_init,
1361  .uninit = lut3d_uninit,
1363  .inputs = lut3d_inputs,
1364  .outputs = lut3d_outputs,
1365  .priv_class = &lut3d_class,
1368 };
1369 #endif
1370 
1371 #if CONFIG_HALDCLUT_FILTER
1372 
1373 static void update_clut_packed(LUT3DContext *lut3d, const AVFrame *frame)
1374 {
1375  const uint8_t *data = frame->data[0];
1376  const int linesize = frame->linesize[0];
1377  const int w = lut3d->clut_width;
1378  const int step = lut3d->clut_step;
1379  const uint8_t *rgba_map = lut3d->clut_rgba_map;
1380  const int level = lut3d->lutsize;
1381  const int level2 = lut3d->lutsize2;
1382 
1383 #define LOAD_CLUT(nbits) do { \
1384  int i, j, k, x = 0, y = 0; \
1385  \
1386  for (k = 0; k < level; k++) { \
1387  for (j = 0; j < level; j++) { \
1388  for (i = 0; i < level; i++) { \
1389  const uint##nbits##_t *src = (const uint##nbits##_t *) \
1390  (data + y*linesize + x*step); \
1391  struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1392  vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \
1393  vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \
1394  vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \
1395  if (++x == w) { \
1396  x = 0; \
1397  y++; \
1398  } \
1399  } \
1400  } \
1401  } \
1402 } while (0)
1403 
1404  switch (lut3d->clut_bits) {
1405  case 8: LOAD_CLUT(8); break;
1406  case 16: LOAD_CLUT(16); break;
1407  }
1408 }
1409 
1410 static void update_clut_planar(LUT3DContext *lut3d, const AVFrame *frame)
1411 {
1412  const uint8_t *datag = frame->data[0];
1413  const uint8_t *datab = frame->data[1];
1414  const uint8_t *datar = frame->data[2];
1415  const int glinesize = frame->linesize[0];
1416  const int blinesize = frame->linesize[1];
1417  const int rlinesize = frame->linesize[2];
1418  const int w = lut3d->clut_width;
1419  const int level = lut3d->lutsize;
1420  const int level2 = lut3d->lutsize2;
1421 
1422 #define LOAD_CLUT_PLANAR(nbits, depth) do { \
1423  int i, j, k, x = 0, y = 0; \
1424  \
1425  for (k = 0; k < level; k++) { \
1426  for (j = 0; j < level; j++) { \
1427  for (i = 0; i < level; i++) { \
1428  const uint##nbits##_t *gsrc = (const uint##nbits##_t *) \
1429  (datag + y*glinesize); \
1430  const uint##nbits##_t *bsrc = (const uint##nbits##_t *) \
1431  (datab + y*blinesize); \
1432  const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \
1433  (datar + y*rlinesize); \
1434  struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1435  vec->r = gsrc[x] / (float)((1<<(depth)) - 1); \
1436  vec->g = bsrc[x] / (float)((1<<(depth)) - 1); \
1437  vec->b = rsrc[x] / (float)((1<<(depth)) - 1); \
1438  if (++x == w) { \
1439  x = 0; \
1440  y++; \
1441  } \
1442  } \
1443  } \
1444  } \
1445 } while (0)
1446 
1447  switch (lut3d->clut_bits) {
1448  case 8: LOAD_CLUT_PLANAR(8, 8); break;
1449  case 9: LOAD_CLUT_PLANAR(16, 9); break;
1450  case 10: LOAD_CLUT_PLANAR(16, 10); break;
1451  case 12: LOAD_CLUT_PLANAR(16, 12); break;
1452  case 14: LOAD_CLUT_PLANAR(16, 14); break;
1453  case 16: LOAD_CLUT_PLANAR(16, 16); break;
1454  }
1455 }
1456 
1457 static void update_clut_float(LUT3DContext *lut3d, const AVFrame *frame)
1458 {
1459  const uint8_t *datag = frame->data[0];
1460  const uint8_t *datab = frame->data[1];
1461  const uint8_t *datar = frame->data[2];
1462  const int glinesize = frame->linesize[0];
1463  const int blinesize = frame->linesize[1];
1464  const int rlinesize = frame->linesize[2];
1465  const int w = lut3d->clut_width;
1466  const int level = lut3d->lutsize;
1467  const int level2 = lut3d->lutsize2;
1468 
1469  int i, j, k, x = 0, y = 0;
1470 
1471  for (k = 0; k < level; k++) {
1472  for (j = 0; j < level; j++) {
1473  for (i = 0; i < level; i++) {
1474  const float *gsrc = (const float *)(datag + y*glinesize);
1475  const float *bsrc = (const float *)(datab + y*blinesize);
1476  const float *rsrc = (const float *)(datar + y*rlinesize);
1477  struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k];
1478  vec->r = rsrc[x];
1479  vec->g = gsrc[x];
1480  vec->b = bsrc[x];
1481  if (++x == w) {
1482  x = 0;
1483  y++;
1484  }
1485  }
1486  }
1487  }
1488 }
1489 
1490 static int config_output(AVFilterLink *outlink)
1491 {
1492  AVFilterContext *ctx = outlink->src;
1493  LUT3DContext *lut3d = ctx->priv;
1494  int ret;
1495 
1496  ret = ff_framesync_init_dualinput(&lut3d->fs, ctx);
1497  if (ret < 0)
1498  return ret;
1499  outlink->w = ctx->inputs[0]->w;
1500  outlink->h = ctx->inputs[0]->h;
1501  outlink->time_base = ctx->inputs[0]->time_base;
1502  if ((ret = ff_framesync_configure(&lut3d->fs)) < 0)
1503  return ret;
1504  return 0;
1505 }
1506 
1507 static int activate(AVFilterContext *ctx)
1508 {
1509  LUT3DContext *s = ctx->priv;
1510  return ff_framesync_activate(&s->fs);
1511 }
1512 
1513 static int config_clut(AVFilterLink *inlink)
1514 {
1515  int size, level, w, h;
1516  AVFilterContext *ctx = inlink->dst;
1517  LUT3DContext *lut3d = ctx->priv;
1519 
1520  av_assert0(desc);
1521 
1522  lut3d->clut_bits = desc->comp[0].depth;
1523  lut3d->clut_planar = av_pix_fmt_count_planes(inlink->format) > 1;
1524  lut3d->clut_float = desc->flags & AV_PIX_FMT_FLAG_FLOAT;
1525 
1526  lut3d->clut_step = av_get_padded_bits_per_pixel(desc) >> 3;
1527  ff_fill_rgba_map(lut3d->clut_rgba_map, inlink->format);
1528 
1529  if (inlink->w > inlink->h)
1530  av_log(ctx, AV_LOG_INFO, "Padding on the right (%dpx) of the "
1531  "Hald CLUT will be ignored\n", inlink->w - inlink->h);
1532  else if (inlink->w < inlink->h)
1533  av_log(ctx, AV_LOG_INFO, "Padding at the bottom (%dpx) of the "
1534  "Hald CLUT will be ignored\n", inlink->h - inlink->w);
1535  lut3d->clut_width = w = h = FFMIN(inlink->w, inlink->h);
1536 
1537  for (level = 1; level*level*level < w; level++);
1538  size = level*level*level;
1539  if (size != w) {
1540  av_log(ctx, AV_LOG_WARNING, "The Hald CLUT width does not match the level\n");
1541  return AVERROR_INVALIDDATA;
1542  }
1543  av_assert0(w == h && w == size);
1544  level *= level;
1545  if (level > MAX_LEVEL) {
1546  const int max_clut_level = sqrt(MAX_LEVEL);
1547  const int max_clut_size = max_clut_level*max_clut_level*max_clut_level;
1548  av_log(ctx, AV_LOG_ERROR, "Too large Hald CLUT "
1549  "(maximum level is %d, or %dx%d CLUT)\n",
1550  max_clut_level, max_clut_size, max_clut_size);
1551  return AVERROR(EINVAL);
1552  }
1553 
1554  return allocate_3dlut(ctx, level, 0);
1555 }
1556 
1557 static int update_apply_clut(FFFrameSync *fs)
1558 {
1559  AVFilterContext *ctx = fs->parent;
1560  LUT3DContext *lut3d = ctx->priv;
1561  AVFilterLink *inlink = ctx->inputs[0];
1562  AVFrame *master, *second, *out;
1563  int ret;
1564 
1565  ret = ff_framesync_dualinput_get(fs, &master, &second);
1566  if (ret < 0)
1567  return ret;
1568  if (!second)
1569  return ff_filter_frame(ctx->outputs[0], master);
1570  if (lut3d->clut_float)
1571  update_clut_float(ctx->priv, second);
1572  else if (lut3d->clut_planar)
1573  update_clut_planar(ctx->priv, second);
1574  else
1575  update_clut_packed(ctx->priv, second);
1576  out = apply_lut(inlink, master);
1577  return ff_filter_frame(ctx->outputs[0], out);
1578 }
1579 
1580 static av_cold int haldclut_init(AVFilterContext *ctx)
1581 {
1582  LUT3DContext *lut3d = ctx->priv;
1583  lut3d->scale.r = lut3d->scale.g = lut3d->scale.b = 1.f;
1584  lut3d->fs.on_event = update_apply_clut;
1585  return 0;
1586 }
1587 
1588 static av_cold void haldclut_uninit(AVFilterContext *ctx)
1589 {
1590  LUT3DContext *lut3d = ctx->priv;
1591  ff_framesync_uninit(&lut3d->fs);
1592  av_freep(&lut3d->lut);
1593 }
1594 
1595 static const AVOption haldclut_options[] = {
1597 };
1598 
1600 
1601 static const AVFilterPad haldclut_inputs[] = {
1602  {
1603  .name = "main",
1604  .type = AVMEDIA_TYPE_VIDEO,
1605  .config_props = config_input,
1606  },{
1607  .name = "clut",
1608  .type = AVMEDIA_TYPE_VIDEO,
1609  .config_props = config_clut,
1610  },
1611  { NULL }
1612 };
1613 
1614 static const AVFilterPad haldclut_outputs[] = {
1615  {
1616  .name = "default",
1617  .type = AVMEDIA_TYPE_VIDEO,
1618  .config_props = config_output,
1619  },
1620  { NULL }
1621 };
1622 
1624  .name = "haldclut",
1625  .description = NULL_IF_CONFIG_SMALL("Adjust colors using a Hald CLUT."),
1626  .priv_size = sizeof(LUT3DContext),
1627  .preinit = haldclut_framesync_preinit,
1628  .init = haldclut_init,
1629  .uninit = haldclut_uninit,
1631  .activate = activate,
1632  .inputs = haldclut_inputs,
1633  .outputs = haldclut_outputs,
1634  .priv_class = &haldclut_class,
1637 };
1638 #endif
1639 
1640 #if CONFIG_LUT1D_FILTER
1641 
1642 enum interp_1d_mode {
1643  INTERPOLATE_1D_NEAREST,
1644  INTERPOLATE_1D_LINEAR,
1645  INTERPOLATE_1D_CUBIC,
1646  INTERPOLATE_1D_COSINE,
1647  INTERPOLATE_1D_SPLINE,
1648  NB_INTERP_1D_MODE
1649 };
1650 
1651 #define MAX_1D_LEVEL 65536
1652 
1653 typedef struct LUT1DContext {
1654  const AVClass *class;
1655  char *file;
1656  int interpolation; ///<interp_1d_mode
1657  struct rgbvec scale;
1658  uint8_t rgba_map[4];
1659  int step;
1660  float lut[3][MAX_1D_LEVEL];
1661  int lutsize;
1662  avfilter_action_func *interp;
1663 } LUT1DContext;
1664 
1665 #undef OFFSET
1666 #define OFFSET(x) offsetof(LUT1DContext, x)
1667 
1668 static void set_identity_matrix_1d(LUT1DContext *lut1d, int size)
1669 {
1670  const float c = 1. / (size - 1);
1671  int i;
1672 
1673  lut1d->lutsize = size;
1674  for (i = 0; i < size; i++) {
1675  lut1d->lut[0][i] = i * c;
1676  lut1d->lut[1][i] = i * c;
1677  lut1d->lut[2][i] = i * c;
1678  }
1679 }
1680 
1681 static int parse_cinespace_1d(AVFilterContext *ctx, FILE *f)
1682 {
1683  LUT1DContext *lut1d = ctx->priv;
1684  char line[MAX_LINE_SIZE];
1685  float in_min[3] = {0.0, 0.0, 0.0};
1686  float in_max[3] = {1.0, 1.0, 1.0};
1687  float out_min[3] = {0.0, 0.0, 0.0};
1688  float out_max[3] = {1.0, 1.0, 1.0};
1689  int inside_metadata = 0, size;
1690 
1692  if (strncmp(line, "CSPLUTV100", 10)) {
1693  av_log(ctx, AV_LOG_ERROR, "Not cineSpace LUT format\n");
1694  return AVERROR(EINVAL);
1695  }
1696 
1698  if (strncmp(line, "1D", 2)) {
1699  av_log(ctx, AV_LOG_ERROR, "Not 1D LUT format\n");
1700  return AVERROR(EINVAL);
1701  }
1702 
1703  while (1) {
1705 
1706  if (!strncmp(line, "BEGIN METADATA", 14)) {
1707  inside_metadata = 1;
1708  continue;
1709  }
1710  if (!strncmp(line, "END METADATA", 12)) {
1711  inside_metadata = 0;
1712  continue;
1713  }
1714  if (inside_metadata == 0) {
1715  for (int i = 0; i < 3; i++) {
1716  int npoints = strtol(line, NULL, 0);
1717 
1718  if (npoints != 2) {
1719  av_log(ctx, AV_LOG_ERROR, "Unsupported number of pre-lut points.\n");
1720  return AVERROR_PATCHWELCOME;
1721  }
1722 
1724  if (av_sscanf(line, "%f %f", &in_min[i], &in_max[i]) != 2)
1725  return AVERROR_INVALIDDATA;
1727  if (av_sscanf(line, "%f %f", &out_min[i], &out_max[i]) != 2)
1728  return AVERROR_INVALIDDATA;
1730  }
1731 
1732  size = strtol(line, NULL, 0);
1733 
1734  if (size < 2 || size > MAX_1D_LEVEL) {
1735  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n");
1736  return AVERROR(EINVAL);
1737  }
1738 
1739  lut1d->lutsize = size;
1740 
1741  for (int i = 0; i < size; i++) {
1743  if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3)
1744  return AVERROR_INVALIDDATA;
1745  lut1d->lut[0][i] *= out_max[0] - out_min[0];
1746  lut1d->lut[1][i] *= out_max[1] - out_min[1];
1747  lut1d->lut[2][i] *= out_max[2] - out_min[2];
1748  }
1749 
1750  break;
1751  }
1752  }
1753 
1754  lut1d->scale.r = av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
1755  lut1d->scale.g = av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
1756  lut1d->scale.b = av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
1757 
1758  return 0;
1759 }
1760 
1761 static int parse_cube_1d(AVFilterContext *ctx, FILE *f)
1762 {
1763  LUT1DContext *lut1d = ctx->priv;
1764  char line[MAX_LINE_SIZE];
1765  float min[3] = {0.0, 0.0, 0.0};
1766  float max[3] = {1.0, 1.0, 1.0};
1767 
1768  while (fgets(line, sizeof(line), f)) {
1769  if (!strncmp(line, "LUT_1D_SIZE", 11)) {
1770  const int size = strtol(line + 12, NULL, 0);
1771  int i;
1772 
1773  if (size < 2 || size > MAX_1D_LEVEL) {
1774  av_log(ctx, AV_LOG_ERROR, "Too large or invalid 1D LUT size\n");
1775  return AVERROR(EINVAL);
1776  }
1777  lut1d->lutsize = size;
1778  for (i = 0; i < size; i++) {
1779  do {
1780 try_again:
1781  NEXT_LINE(0);
1782  if (!strncmp(line, "DOMAIN_", 7)) {
1783  float *vals = NULL;
1784  if (!strncmp(line + 7, "MIN ", 4)) vals = min;
1785  else if (!strncmp(line + 7, "MAX ", 4)) vals = max;
1786  if (!vals)
1787  return AVERROR_INVALIDDATA;
1788  av_sscanf(line + 11, "%f %f %f", vals, vals + 1, vals + 2);
1789  av_log(ctx, AV_LOG_DEBUG, "min: %f %f %f | max: %f %f %f\n",
1790  min[0], min[1], min[2], max[0], max[1], max[2]);
1791  goto try_again;
1792  } else if (!strncmp(line, "LUT_1D_INPUT_RANGE ", 19)) {
1793  av_sscanf(line + 19, "%f %f", min, max);
1794  min[1] = min[2] = min[0];
1795  max[1] = max[2] = max[0];
1796  goto try_again;
1797  } else if (!strncmp(line, "TITLE", 5)) {
1798  goto try_again;
1799  }
1800  } while (skip_line(line));
1801  if (av_sscanf(line, "%f %f %f", &lut1d->lut[0][i], &lut1d->lut[1][i], &lut1d->lut[2][i]) != 3)
1802  return AVERROR_INVALIDDATA;
1803  }
1804  break;
1805  }
1806  }
1807 
1808  lut1d->scale.r = av_clipf(1. / (max[0] - min[0]), 0.f, 1.f);
1809  lut1d->scale.g = av_clipf(1. / (max[1] - min[1]), 0.f, 1.f);
1810  lut1d->scale.b = av_clipf(1. / (max[2] - min[2]), 0.f, 1.f);
1811 
1812  return 0;
1813 }
1814 
1815 static const AVOption lut1d_options[] = {
1816  { "file", "set 1D LUT file name", OFFSET(file), AV_OPT_TYPE_STRING, {.str=NULL}, .flags = TFLAGS },
1817  { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_1D_LINEAR}, 0, NB_INTERP_1D_MODE-1, TFLAGS, "interp_mode" },
1818  { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_NEAREST}, 0, 0, TFLAGS, "interp_mode" },
1819  { "linear", "use values from the linear interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_LINEAR}, 0, 0, TFLAGS, "interp_mode" },
1820  { "cosine", "use values from the cosine interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_COSINE}, 0, 0, TFLAGS, "interp_mode" },
1821  { "cubic", "use values from the cubic interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_CUBIC}, 0, 0, TFLAGS, "interp_mode" },
1822  { "spline", "use values from the spline interpolation", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_SPLINE}, 0, 0, TFLAGS, "interp_mode" },
1823  { NULL }
1824 };
1825 
1826 AVFILTER_DEFINE_CLASS(lut1d);
1827 
1828 static inline float interp_1d_nearest(const LUT1DContext *lut1d,
1829  int idx, const float s)
1830 {
1831  return lut1d->lut[idx][NEAR(s)];
1832 }
1833 
1834 #define NEXT1D(x) (FFMIN((int)(x) + 1, lut1d->lutsize - 1))
1835 
1836 static inline float interp_1d_linear(const LUT1DContext *lut1d,
1837  int idx, const float s)
1838 {
1839  const int prev = PREV(s);
1840  const int next = NEXT1D(s);
1841  const float d = s - prev;
1842  const float p = lut1d->lut[idx][prev];
1843  const float n = lut1d->lut[idx][next];
1844 
1845  return lerpf(p, n, d);
1846 }
1847 
1848 static inline float interp_1d_cosine(const LUT1DContext *lut1d,
1849  int idx, const float s)
1850 {
1851  const int prev = PREV(s);
1852  const int next = NEXT1D(s);
1853  const float d = s - prev;
1854  const float p = lut1d->lut[idx][prev];
1855  const float n = lut1d->lut[idx][next];
1856  const float m = (1.f - cosf(d * M_PI)) * .5f;
1857 
1858  return lerpf(p, n, m);
1859 }
1860 
1861 static inline float interp_1d_cubic(const LUT1DContext *lut1d,
1862  int idx, const float s)
1863 {
1864  const int prev = PREV(s);
1865  const int next = NEXT1D(s);
1866  const float mu = s - prev;
1867  float a0, a1, a2, a3, mu2;
1868 
1869  float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)];
1870  float y1 = lut1d->lut[idx][prev];
1871  float y2 = lut1d->lut[idx][next];
1872  float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)];
1873 
1874 
1875  mu2 = mu * mu;
1876  a0 = y3 - y2 - y0 + y1;
1877  a1 = y0 - y1 - a0;
1878  a2 = y2 - y0;
1879  a3 = y1;
1880 
1881  return a0 * mu * mu2 + a1 * mu2 + a2 * mu + a3;
1882 }
1883 
1884 static inline float interp_1d_spline(const LUT1DContext *lut1d,
1885  int idx, const float s)
1886 {
1887  const int prev = PREV(s);
1888  const int next = NEXT1D(s);
1889  const float x = s - prev;
1890  float c0, c1, c2, c3;
1891 
1892  float y0 = lut1d->lut[idx][FFMAX(prev - 1, 0)];
1893  float y1 = lut1d->lut[idx][prev];
1894  float y2 = lut1d->lut[idx][next];
1895  float y3 = lut1d->lut[idx][FFMIN(next + 1, lut1d->lutsize - 1)];
1896 
1897  c0 = y1;
1898  c1 = .5f * (y2 - y0);
1899  c2 = y0 - 2.5f * y1 + 2.f * y2 - .5f * y3;
1900  c3 = .5f * (y3 - y0) + 1.5f * (y1 - y2);
1901 
1902  return ((c3 * x + c2) * x + c1) * x + c0;
1903 }
1904 
1905 #define DEFINE_INTERP_FUNC_PLANAR_1D(name, nbits, depth) \
1906 static int interp_1d_##nbits##_##name##_p##depth(AVFilterContext *ctx, \
1907  void *arg, int jobnr, \
1908  int nb_jobs) \
1909 { \
1910  int x, y; \
1911  const LUT1DContext *lut1d = ctx->priv; \
1912  const ThreadData *td = arg; \
1913  const AVFrame *in = td->in; \
1914  const AVFrame *out = td->out; \
1915  const int direct = out == in; \
1916  const int slice_start = (in->height * jobnr ) / nb_jobs; \
1917  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
1918  uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
1919  uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
1920  uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
1921  uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
1922  const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
1923  const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
1924  const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
1925  const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
1926  const float factor = (1 << depth) - 1; \
1927  const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
1928  const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
1929  const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
1930  \
1931  for (y = slice_start; y < slice_end; y++) { \
1932  uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
1933  uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
1934  uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
1935  uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
1936  const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
1937  const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
1938  const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
1939  const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
1940  for (x = 0; x < in->width; x++) { \
1941  float r = srcr[x] * scale_r; \
1942  float g = srcg[x] * scale_g; \
1943  float b = srcb[x] * scale_b; \
1944  r = interp_1d_##name(lut1d, 0, r); \
1945  g = interp_1d_##name(lut1d, 1, g); \
1946  b = interp_1d_##name(lut1d, 2, b); \
1947  dstr[x] = av_clip_uintp2(r * factor, depth); \
1948  dstg[x] = av_clip_uintp2(g * factor, depth); \
1949  dstb[x] = av_clip_uintp2(b * factor, depth); \
1950  if (!direct && in->linesize[3]) \
1951  dsta[x] = srca[x]; \
1952  } \
1953  grow += out->linesize[0]; \
1954  brow += out->linesize[1]; \
1955  rrow += out->linesize[2]; \
1956  arow += out->linesize[3]; \
1957  srcgrow += in->linesize[0]; \
1958  srcbrow += in->linesize[1]; \
1959  srcrrow += in->linesize[2]; \
1960  srcarow += in->linesize[3]; \
1961  } \
1962  return 0; \
1963 }
1964 
1965 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 8, 8)
1966 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 8, 8)
1967 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 8, 8)
1968 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 8, 8)
1969 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 8, 8)
1970 
1971 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 9)
1972 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 9)
1973 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 9)
1974 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 9)
1975 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 9)
1976 
1977 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 10)
1978 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 10)
1979 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 10)
1980 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 10)
1981 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 10)
1982 
1983 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 12)
1984 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 12)
1985 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 12)
1986 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 12)
1987 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 12)
1988 
1989 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 14)
1990 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 14)
1991 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 14)
1992 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 14)
1993 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 14)
1994 
1995 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 16)
1996 DEFINE_INTERP_FUNC_PLANAR_1D(linear, 16, 16)
1997 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 16)
1998 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 16)
1999 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 16)
2000 
2001 #define DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(name, depth) \
2002 static int interp_1d_##name##_pf##depth(AVFilterContext *ctx, \
2003  void *arg, int jobnr, \
2004  int nb_jobs) \
2005 { \
2006  int x, y; \
2007  const LUT1DContext *lut1d = ctx->priv; \
2008  const ThreadData *td = arg; \
2009  const AVFrame *in = td->in; \
2010  const AVFrame *out = td->out; \
2011  const int direct = out == in; \
2012  const int slice_start = (in->height * jobnr ) / nb_jobs; \
2013  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
2014  uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
2015  uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
2016  uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
2017  uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
2018  const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
2019  const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
2020  const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
2021  const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
2022  const float lutsize = lut1d->lutsize - 1; \
2023  const float scale_r = lut1d->scale.r * lutsize; \
2024  const float scale_g = lut1d->scale.g * lutsize; \
2025  const float scale_b = lut1d->scale.b * lutsize; \
2026  \
2027  for (y = slice_start; y < slice_end; y++) { \
2028  float *dstg = (float *)grow; \
2029  float *dstb = (float *)brow; \
2030  float *dstr = (float *)rrow; \
2031  float *dsta = (float *)arow; \
2032  const float *srcg = (const float *)srcgrow; \
2033  const float *srcb = (const float *)srcbrow; \
2034  const float *srcr = (const float *)srcrrow; \
2035  const float *srca = (const float *)srcarow; \
2036  for (x = 0; x < in->width; x++) { \
2037  float r = av_clipf(sanitizef(srcr[x]) * scale_r, 0.0f, lutsize); \
2038  float g = av_clipf(sanitizef(srcg[x]) * scale_g, 0.0f, lutsize); \
2039  float b = av_clipf(sanitizef(srcb[x]) * scale_b, 0.0f, lutsize); \
2040  r = interp_1d_##name(lut1d, 0, r); \
2041  g = interp_1d_##name(lut1d, 1, g); \
2042  b = interp_1d_##name(lut1d, 2, b); \
2043  dstr[x] = r; \
2044  dstg[x] = g; \
2045  dstb[x] = b; \
2046  if (!direct && in->linesize[3]) \
2047  dsta[x] = srca[x]; \
2048  } \
2049  grow += out->linesize[0]; \
2050  brow += out->linesize[1]; \
2051  rrow += out->linesize[2]; \
2052  arow += out->linesize[3]; \
2053  srcgrow += in->linesize[0]; \
2054  srcbrow += in->linesize[1]; \
2055  srcrrow += in->linesize[2]; \
2056  srcarow += in->linesize[3]; \
2057  } \
2058  return 0; \
2059 }
2060 
2061 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(nearest, 32)
2062 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(linear, 32)
2063 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cosine, 32)
2064 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cubic, 32)
2065 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(spline, 32)
2066 
2067 #define DEFINE_INTERP_FUNC_1D(name, nbits) \
2068 static int interp_1d_##nbits##_##name(AVFilterContext *ctx, void *arg, \
2069  int jobnr, int nb_jobs) \
2070 { \
2071  int x, y; \
2072  const LUT1DContext *lut1d = ctx->priv; \
2073  const ThreadData *td = arg; \
2074  const AVFrame *in = td->in; \
2075  const AVFrame *out = td->out; \
2076  const int direct = out == in; \
2077  const int step = lut1d->step; \
2078  const uint8_t r = lut1d->rgba_map[R]; \
2079  const uint8_t g = lut1d->rgba_map[G]; \
2080  const uint8_t b = lut1d->rgba_map[B]; \
2081  const uint8_t a = lut1d->rgba_map[A]; \
2082  const int slice_start = (in->height * jobnr ) / nb_jobs; \
2083  const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
2084  uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
2085  const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
2086  const float factor = (1 << nbits) - 1; \
2087  const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
2088  const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
2089  const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
2090  \
2091  for (y = slice_start; y < slice_end; y++) { \
2092  uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
2093  const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
2094  for (x = 0; x < in->width * step; x += step) { \
2095  float rr = src[x + r] * scale_r; \
2096  float gg = src[x + g] * scale_g; \
2097  float bb = src[x + b] * scale_b; \
2098  rr = interp_1d_##name(lut1d, 0, rr); \
2099  gg = interp_1d_##name(lut1d, 1, gg); \
2100  bb = interp_1d_##name(lut1d, 2, bb); \
2101  dst[x + r] = av_clip_uint##nbits(rr * factor); \
2102  dst[x + g] = av_clip_uint##nbits(gg * factor); \
2103  dst[x + b] = av_clip_uint##nbits(bb * factor); \
2104  if (!direct && step == 4) \
2105  dst[x + a] = src[x + a]; \
2106  } \
2107  dstrow += out->linesize[0]; \
2108  srcrow += in ->linesize[0]; \
2109  } \
2110  return 0; \
2111 }
2112 
2113 DEFINE_INTERP_FUNC_1D(nearest, 8)
2114 DEFINE_INTERP_FUNC_1D(linear, 8)
2115 DEFINE_INTERP_FUNC_1D(cosine, 8)
2116 DEFINE_INTERP_FUNC_1D(cubic, 8)
2117 DEFINE_INTERP_FUNC_1D(spline, 8)
2118 
2119 DEFINE_INTERP_FUNC_1D(nearest, 16)
2120 DEFINE_INTERP_FUNC_1D(linear, 16)
2121 DEFINE_INTERP_FUNC_1D(cosine, 16)
2122 DEFINE_INTERP_FUNC_1D(cubic, 16)
2123 DEFINE_INTERP_FUNC_1D(spline, 16)
2124 
2125 static int config_input_1d(AVFilterLink *inlink)
2126 {
2127  int depth, is16bit, isfloat, planar;
2128  LUT1DContext *lut1d = inlink->dst->priv;
2129  const AVPixFmtDescriptor *desc = av_pix_fmt_desc_get(inlink->format);
2130 
2131  depth = desc->comp[0].depth;
2132  is16bit = desc->comp[0].depth > 8;
2133  planar = desc->flags & AV_PIX_FMT_FLAG_PLANAR;
2134  isfloat = desc->flags & AV_PIX_FMT_FLAG_FLOAT;
2135  ff_fill_rgba_map(lut1d->rgba_map, inlink->format);
2136  lut1d->step = av_get_padded_bits_per_pixel(desc) >> (3 + is16bit);
2137 
2138 #define SET_FUNC_1D(name) do { \
2139  if (planar && !isfloat) { \
2140  switch (depth) { \
2141  case 8: lut1d->interp = interp_1d_8_##name##_p8; break; \
2142  case 9: lut1d->interp = interp_1d_16_##name##_p9; break; \
2143  case 10: lut1d->interp = interp_1d_16_##name##_p10; break; \
2144  case 12: lut1d->interp = interp_1d_16_##name##_p12; break; \
2145  case 14: lut1d->interp = interp_1d_16_##name##_p14; break; \
2146  case 16: lut1d->interp = interp_1d_16_##name##_p16; break; \
2147  } \
2148  } else if (isfloat) { lut1d->interp = interp_1d_##name##_pf32; \
2149  } else if (is16bit) { lut1d->interp = interp_1d_16_##name; \
2150  } else { lut1d->interp = interp_1d_8_##name; } \
2151 } while (0)
2152 
2153  switch (lut1d->interpolation) {
2154  case INTERPOLATE_1D_NEAREST: SET_FUNC_1D(nearest); break;
2155  case INTERPOLATE_1D_LINEAR: SET_FUNC_1D(linear); break;
2156  case INTERPOLATE_1D_COSINE: SET_FUNC_1D(cosine); break;
2157  case INTERPOLATE_1D_CUBIC: SET_FUNC_1D(cubic); break;
2158  case INTERPOLATE_1D_SPLINE: SET_FUNC_1D(spline); break;
2159  default:
2160  av_assert0(0);
2161  }
2162 
2163  return 0;
2164 }
2165 
2166 static av_cold int lut1d_init(AVFilterContext *ctx)
2167 {
2168  int ret;
2169  FILE *f;
2170  const char *ext;
2171  LUT1DContext *lut1d = ctx->priv;
2172 
2173  lut1d->scale.r = lut1d->scale.g = lut1d->scale.b = 1.f;
2174 
2175  if (!lut1d->file) {
2176  set_identity_matrix_1d(lut1d, 32);
2177  return 0;
2178  }
2179 
2180  f = av_fopen_utf8(lut1d->file, "r");
2181  if (!f) {
2182  ret = AVERROR(errno);
2183  av_log(ctx, AV_LOG_ERROR, "%s: %s\n", lut1d->file, av_err2str(ret));
2184  return ret;
2185  }
2186 
2187  ext = strrchr(lut1d->file, '.');
2188  if (!ext) {
2189  av_log(ctx, AV_LOG_ERROR, "Unable to guess the format from the extension\n");
2190  ret = AVERROR_INVALIDDATA;
2191  goto end;
2192  }
2193  ext++;
2194 
2195  if (!av_strcasecmp(ext, "cube") || !av_strcasecmp(ext, "1dlut")) {
2196  ret = parse_cube_1d(ctx, f);
2197  } else if (!av_strcasecmp(ext, "csp")) {
2198  ret = parse_cinespace_1d(ctx, f);
2199  } else {
2200  av_log(ctx, AV_LOG_ERROR, "Unrecognized '.%s' file type\n", ext);
2201  ret = AVERROR(EINVAL);
2202  }
2203 
2204  if (!ret && !lut1d->lutsize) {
2205  av_log(ctx, AV_LOG_ERROR, "1D LUT is empty\n");
2206  ret = AVERROR_INVALIDDATA;
2207  }
2208 
2209 end:
2210  fclose(f);
2211  return ret;
2212 }
2213 
2214 static AVFrame *apply_1d_lut(AVFilterLink *inlink, AVFrame *in)
2215 {
2216  AVFilterContext *ctx = inlink->dst;
2217  LUT1DContext *lut1d = ctx->priv;
2218  AVFilterLink *outlink = inlink->dst->outputs[0];
2219  AVFrame *out;
2220  ThreadData td;
2221 
2222  if (av_frame_is_writable(in)) {
2223  out = in;
2224  } else {
2225  out = ff_get_video_buffer(outlink, outlink->w, outlink->h);
2226  if (!out) {
2227  av_frame_free(&in);
2228  return NULL;
2229  }
2231  }
2232 
2233  td.in = in;
2234  td.out = out;
2235  ctx->internal->execute(ctx, lut1d->interp, &td, NULL, FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
2236 
2237  if (out != in)
2238  av_frame_free(&in);
2239 
2240  return out;
2241 }
2242 
2243 static int filter_frame_1d(AVFilterLink *inlink, AVFrame *in)
2244 {
2245  AVFilterLink *outlink = inlink->dst->outputs[0];
2246  AVFrame *out = apply_1d_lut(inlink, in);
2247  if (!out)
2248  return AVERROR(ENOMEM);
2249  return ff_filter_frame(outlink, out);
2250 }
2251 
2252 static int lut1d_process_command(AVFilterContext *ctx, const char *cmd, const char *args,
2253  char *res, int res_len, int flags)
2254 {
2255  LUT1DContext *lut1d = ctx->priv;
2256  int ret;
2257 
2258  ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags);
2259  if (ret < 0)
2260  return ret;
2261 
2262  ret = lut1d_init(ctx);
2263  if (ret < 0) {
2264  set_identity_matrix_1d(lut1d, 32);
2265  return ret;
2266  }
2267  return config_input_1d(ctx->inputs[0]);
2268 }
2269 
2270 static const AVFilterPad lut1d_inputs[] = {
2271  {
2272  .name = "default",
2273  .type = AVMEDIA_TYPE_VIDEO,
2274  .filter_frame = filter_frame_1d,
2275  .config_props = config_input_1d,
2276  },
2277  { NULL }
2278 };
2279 
2280 static const AVFilterPad lut1d_outputs[] = {
2281  {
2282  .name = "default",
2283  .type = AVMEDIA_TYPE_VIDEO,
2284  },
2285  { NULL }
2286 };
2287 
2289  .name = "lut1d",
2290  .description = NULL_IF_CONFIG_SMALL("Adjust colors using a 1D LUT."),
2291  .priv_size = sizeof(LUT1DContext),
2292  .init = lut1d_init,
2294  .inputs = lut1d_inputs,
2295  .outputs = lut1d_outputs,
2296  .priv_class = &lut1d_class,
2298  .process_command = lut1d_process_command,
2299 };
2300 #endif
static double val(void *priv, double ch)
Definition: aeval.c:76
static const AVFilterPad inputs[]
Definition: af_acontrast.c:193
static const AVFilterPad outputs[]
Definition: af_acontrast.c:203
static int activate(AVFilterContext *ctx)
Definition: af_adeclick.c:630
static int interpolation(DeclickChannel *c, const double *src, int ar_order, double *acoefficients, int *index, int nb_errors, double *auxiliary, double *interpolated)
Definition: af_adeclick.c:365
static int config_output(AVFilterLink *outlink)
Definition: af_adenorm.c:185
AVFilter ff_vf_haldclut
AVFilter ff_vf_lut3d
AVFilter ff_vf_lut1d
#define av_cold
Definition: attributes.h:88
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
uint8_t
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1<< 16)) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out->ch+ch,(const uint8_t **) in->ch+ch, off *(out-> planar
Definition: audioconvert.c:56
simple assert() macros that are a bit more flexible than ISO C assert().
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1096
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
Definition: avfilter.c:882
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Definition: avfilter.c:802
Main libavfilter public API header.
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:31
#define flags(name, subs,...)
Definition: cbs_av1.c:561
#define s(width, name)
Definition: cbs_vp9.c:257
#define f(width, name)
Definition: cbs_vp9.c:255
#define fs(width, name, subs,...)
Definition: cbs_vp9.c:259
#define FFMIN(a, b)
Definition: common.h:105
#define FFMAX(a, b)
Definition: common.h:103
#define av_clipf
Definition: common.h:170
#define NULL
Definition: coverity.c:32
static av_cold int uninit(AVCodecContext *avctx)
Definition: crystalhd.c:279
#define max(a, b)
Definition: cuda_runtime.h:33
static AVFrame * frame
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
Definition: drawutils.c:35
misc drawing utilities
Misc file utilities.
int ff_set_common_formats(AVFilterContext *ctx, AVFilterFormats *formats)
A helper for query_formats() which sets all links to the same list of formats.
Definition: formats.c:587
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:286
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
Definition: framesync.c:124
int ff_framesync_dualinput_get(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
Definition: framesync.c:376
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter's input and try to produce output.
Definition: framesync.c:341
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
Definition: framesync.c:358
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
Definition: framesync.c:290
#define FRAMESYNC_DEFINE_CLASS(name, context, field)
Definition: framesync.h:302
@ AV_OPT_TYPE_CONST
Definition: opt.h:234
@ AV_OPT_TYPE_INT
Definition: opt.h:225
@ AV_OPT_TYPE_STRING
Definition: opt.h:229
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
Definition: avfilter.h:126
int() avfilter_action_func(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
A function pointer passed to the AVFilterGraph::execute callback to be executed multiple times,...
Definition: avfilter.h:833
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Definition: avfilter.h:117
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
Definition: avfilter.h:134
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
Definition: error.h:62
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
Definition: error.h:59
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
Definition: error.h:119
#define AVERROR(e)
Definition: error.h:43
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
Definition: frame.c:594
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:203
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
Definition: frame.c:658
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:215
#define AV_LOG_WARNING
Something somehow does not look correct.
Definition: log.h:200
#define AV_LOG_INFO
Standard information.
Definition: log.h:205
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
FILE * av_fopen_utf8(const char *path, const char *mode)
Open a file using a UTF-8 filename.
Definition: file_open.c:158
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
Definition: avstring.c:215
static av_const int av_isspace(int c)
Locale-independent conversion of ASCII isspace.
Definition: avstring.h:227
int av_sscanf(const char *string, const char *format,...)
See libc sscanf manual for more information.
Definition: avsscanf.c:962
RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT uint8_t const uint8_t const uint8_t const uint8_t * rsrc
Definition: input.c:399
RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT uint8_t const uint8_t * gsrc
Definition: input.c:399
RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT RGB2YUV_SHIFT uint8_t const uint8_t const uint8_t * bsrc
Definition: input.c:399
int i
Definition: input.c:407
static int linear(InterplayACMContext *s, unsigned ind, unsigned col)
Definition: interplayacm.c:121
static int mix(int c0, int c1)
Definition: 4xm.c:715
#define AVFILTER_DEFINE_CLASS(fname)
Definition: internal.h:288
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:309
#define cosf(x)
Definition: libm.h:78
const char * desc
Definition: libsvtav1.c:79
uint8_t w
Definition: llviddspenc.c:39
#define M_PI
Definition: mathematics.h:52
static const uint64_t c2
Definition: murmur3.c:52
static const uint64_t c1
Definition: murmur3.c:51
const char data[16]
Definition: mxf.c:142
AVOptions.
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2613
int av_get_padded_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel for the pixel format described by pixdesc, including any padding ...
Definition: pixdesc.c:2538
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2573
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
Definition: pixdesc.h:190
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
Definition: pixdesc.h:144
#define AV_PIX_FMT_GBRAP12
Definition: pixfmt.h:420
#define AV_PIX_FMT_GBRPF32
Definition: pixfmt.h:428
#define AV_PIX_FMT_GBRAP16
Definition: pixfmt.h:421
#define AV_PIX_FMT_GBRP9
Definition: pixfmt.h:414
#define AV_PIX_FMT_BGR48
Definition: pixfmt.h:390
#define AV_PIX_FMT_GBRP10
Definition: pixfmt.h:415
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:389
#define AV_PIX_FMT_GBRP12
Definition: pixfmt.h:416
#define AV_PIX_FMT_RGB48
Definition: pixfmt.h:385
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
@ AV_PIX_FMT_BGR0
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
Definition: pixfmt.h:240
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:92
@ AV_PIX_FMT_BGRA
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:95
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:94
@ AV_PIX_FMT_0BGR
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
Definition: pixfmt.h:239
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:93
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
@ AV_PIX_FMT_RGB0
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
Definition: pixfmt.h:238
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
@ AV_PIX_FMT_0RGB
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
Definition: pixfmt.h:237
#define AV_PIX_FMT_BGRA64
Definition: pixfmt.h:394
#define AV_PIX_FMT_GBRAP10
Definition: pixfmt.h:419
#define AV_PIX_FMT_GBRP16
Definition: pixfmt.h:418
#define AV_PIX_FMT_GBRP14
Definition: pixfmt.h:417
#define AV_PIX_FMT_GBRAPF32
Definition: pixfmt.h:429
#define v0
Definition: regdef.h:26
#define a3
Definition: regdef.h:49
#define a2
Definition: regdef.h:48
#define a0
Definition: regdef.h:46
#define td
Definition: regdef.h:70
#define a1
Definition: regdef.h:47
Describe the class of an AVClass context structure.
Definition: log.h:67
An instance of a filter.
Definition: avfilter.h:341
void * priv
private data for use by the filter
Definition: avfilter.h:356
AVFilterLink ** outputs
array of pointers to output links
Definition: avfilter.h:353
A list of supported formats for one end of a filter link.
Definition: formats.h:65
A filter pad used for either input or output.
Definition: internal.h:54
const char * name
Pad name.
Definition: internal.h:60
Filter definition.
Definition: avfilter.h:145
const char * name
Filter name.
Definition: avfilter.h:149
AVFormatInternal * internal
An opaque field for libavformat internal usage.
Definition: avformat.h:1699
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:332
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:349
AVOption.
Definition: opt.h:248
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
Frame sync structure.
Definition: framesync.h:146
char * file
Definition: vf_lut3d.c:77
struct rgbvec * lut
Definition: vf_lut3d.c:82
int interpolation
interp_mode
Definition: vf_lut3d.c:76
int lutsize
Definition: vf_lut3d.c:83
uint8_t rgba_map[4]
Definition: vf_lut3d.c:78
int lutsize2
Definition: vf_lut3d.c:84
avfilter_action_func * interp
Definition: vf_lut3d.c:80
Lut3DPreLut prelut
Definition: vf_lut3d.c:85
struct rgbvec scale
Definition: vf_lut3d.c:81
int size
Definition: vf_lut3d.c:67
float min[3]
Definition: vf_lut3d.c:68
float scale[3]
Definition: vf_lut3d.c:70
float * lut[3]
Definition: vf_lut3d.c:71
float max[3]
Definition: vf_lut3d.c:69
Used for passing data between threads.
Definition: dsddec.c:67
AVFrame * out
Definition: af_adeclick.c:502
AVFrame * in
Definition: af_adenorm.c:223
Definition: graph2dot.c:48
float r
Definition: vf_lut3d.c:58
float b
Definition: vf_lut3d.c:58
float g
Definition: vf_lut3d.c:58
uint8_t level
Definition: svq3.c:206
#define av_malloc_array(a, b)
#define av_freep(p)
#define av_malloc(s)
#define av_log(a,...)
FILE * out
Definition: movenc.c:54
AVFormatContext * ctx
Definition: movenc.c:48
int size
uint32_t i
Definition: intfloat.h:28
const char * b
Definition: vf_curves.c:118
const char * g
Definition: vf_curves.c:117
const char * master
Definition: vf_curves.c:119
const char * r
Definition: vf_curves.c:116
static float sanitizef(float f)
Definition: vf_lut3d.c:117
interp_mode
Definition: vf_lut3d.c:48
@ INTERPOLATE_TRILINEAR
Definition: vf_lut3d.c:50
@ INTERPOLATE_PYRAMID
Definition: vf_lut3d.c:52
@ NB_INTERP_MODE
Definition: vf_lut3d.c:54
@ INTERPOLATE_TETRAHEDRAL
Definition: vf_lut3d.c:51
@ INTERPOLATE_PRISM
Definition: vf_lut3d.c:53
@ INTERPOLATE_NEAREST
Definition: vf_lut3d.c:49
#define NEXT(x)
Definition: vf_lut3d.c:152
#define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth)
Definition: vf_lut3d.c:375
static int nearest_sample_index(float *data, float x, int low, int hi)
Definition: vf_lut3d.c:890
static int skip_line(const char *p)
Definition: vf_lut3d.c:603
static int set_identity_matrix(AVFilterContext *ctx, int size)
Definition: vf_lut3d.c:1125
#define DEFINE_INTERP_FUNC(name, nbits)
Definition: vf_lut3d.c:540
#define NEAR(x)
Definition: vf_lut3d.c:150
#define COMMON_OPTIONS
Definition: vf_lut3d.c:104
#define NEXT_LINE_OR_GOTO(loop_cond, label)
Definition: vf_lut3d.c:651
static int parse_m3d(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:821
#define TFLAGS
Definition: vf_lut3d.c:103
static int query_formats(AVFilterContext *ctx)
Definition: vf_lut3d.c:1150
#define MAX_LEVEL
Definition: vf_lut3d.c:63
#define SET_COLOR(id)
static int config_input(AVFilterLink *inlink)
Definition: vf_lut3d.c:1175
static struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
Definition: vf_lut3d.c:142
#define PRELUT_SIZE
Definition: vf_lut3d.c:64
#define FLAGS
Definition: vf_lut3d.c:102
#define MAX_LINE_SIZE
Definition: vf_lut3d.c:601
#define PREV(x)
Definition: vf_lut3d.c:151
#define NEXT_FLOAT_OR_GOTO(value, label)
Definition: vf_lut3d.c:918
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
Definition: vf_lut3d.c:1245
static struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d, const struct rgbvec *s)
Tetrahedral interpolation.
Definition: vf_lut3d.c:292
#define NEXT_LINE(loop_cond)
Definition: vf_lut3d.c:644
static struct rgbvec interp_trilinear(const LUT3DContext *lut3d, const struct rgbvec *s)
Interpolate using the 8 vertices of a cube.
Definition: vf_lut3d.c:167
static char * fget_next_word(char *dst, int max, FILE *f)
Definition: vf_lut3d.c:610
static float lerpf(float v0, float v1, float f)
Definition: vf_lut3d.c:137
static struct rgbvec interp_prism(const LUT3DContext *lut3d, const struct rgbvec *s)
Definition: vf_lut3d.c:243
static struct rgbvec apply_prelut(const Lut3DPreLut *prelut, const struct rgbvec *s)
Definition: vf_lut3d.c:361
static AVFrame * apply_lut(AVFilterLink *inlink, AVFrame *in)
Definition: vf_lut3d.c:1216
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
Definition: vf_lut3d.c:1254
static int parse_3dl(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:786
static int allocate_3dlut(AVFilterContext *ctx, int lutsize, int prelut)
Definition: vf_lut3d.c:659
static struct rgbvec interp_pyramid(const LUT3DContext *lut3d, const struct rgbvec *s)
Definition: vf_lut3d.c:193
static struct rgbvec interp_nearest(const LUT3DContext *lut3d, const struct rgbvec *s)
Get the nearest defined point.
Definition: vf_lut3d.c:157
#define SIGN_MASK
Definition: vf_lut3d.c:115
#define OFFSET(x)
Definition: vf_lut3d.c:101
static float prelut_interp_1d_linear(const Lut3DPreLut *prelut, int idx, const float s)
Definition: vf_lut3d.c:347
#define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth)
Definition: vf_lut3d.c:473
static int parse_dat(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:694
#define SET_FUNC(name)
static int parse_cinespace(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:928
#define MANTISSA_MASK
Definition: vf_lut3d.c:114
#define EXPONENT_MASK
Definition: vf_lut3d.c:113
static int parse_cube(AVFilterContext *ctx, FILE *f)
Definition: vf_lut3d.c:729
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:104
float min
static double c[64]