84 for (
int i = 0;
i < n / 2;
i++)
85 q[
i] = 1. / (-2. * cos(
M_PI * (2. * (
i + 1) + n - 1.) / (2. * n)));
93 double K = tan(
M_PI * w0);
96 s->bypass = w0 >= 0.5;
100 if (!strcmp(
ctx->filter->name,
"asubcut")) {
101 s->filter_count =
s->order / 2 + (
s->order & 1);
107 double omega = 2. * tan(
M_PI * w0);
109 coeffs->
b0 = 2. / (2. + omega);
110 coeffs->
b1 = -coeffs->
b0;
112 coeffs->
a1 = -(omega - 2.) / (2. + omega);
116 for (
int b = (
s->order & 1);
b <
s->filter_count;
b++) {
118 const int idx =
b - (
s->order & 1);
119 double norm = 1.0 / (1.0 + K / q[idx] + K * K);
122 coeffs->
b1 = -2.0 * coeffs->
b0;
123 coeffs->
b2 = coeffs->
b0;
124 coeffs->
a1 = -2.0 * (K * K - 1.0) * norm;
125 coeffs->
a2 = -(1.0 - K / q[idx] + K * K) * norm;
127 }
else if (!strcmp(
ctx->filter->name,
"asupercut")) {
128 s->filter_count =
s->order / 2 + (
s->order & 1);
134 double omega = 2. * tan(
M_PI * w0);
136 coeffs->
b0 = omega / (2. + omega);
137 coeffs->
b1 = coeffs->
b0;
139 coeffs->
a1 = -(omega - 2.) / (2. + omega);
143 for (
int b = (
s->order & 1);
b <
s->filter_count;
b++) {
145 const int idx =
b - (
s->order & 1);
146 double norm = 1.0 / (1.0 + K / q[idx] + K * K);
148 coeffs->
b0 = K * K * norm;
149 coeffs->
b1 = 2.0 * coeffs->
b0;
150 coeffs->
b2 = coeffs->
b0;
151 coeffs->
a1 = -2.0 * (K * K - 1.0) * norm;
152 coeffs->
a2 = -(1.0 - K / q[idx] + K * K) * norm;
154 }
else if (!strcmp(
ctx->filter->name,
"asuperpass")) {
155 double alpha, beta, gamma, theta;
159 s->filter_count =
s->order / 2;
160 d_E = (2. * tan(theta_0 / (2. *
s->qfactor))) / sin(theta_0);
162 for (
int b = 0;
b <
s->filter_count;
b += 2) {
163 double D = 2. * sin(((
b + 1) *
M_PI) / (2. *
s->filter_count));
164 double A = (1. + pow((d_E / 2.), 2)) / (
D * d_E / 2.);
165 double d = sqrt((d_E *
D) / (
A + sqrt(
A *
A - 1.)));
166 double B =
D * (d_E / 2.) / d;
167 double W =
B + sqrt(
B *
B - 1.);
169 for (
int j = 0; j < 2; j++) {
173 theta = 2. * atan(tan(theta_0 / 2.) /
W);
175 theta = 2. * atan(
W * tan(theta_0 / 2.));
177 beta = 0.5 * ((1. - (d / 2.) * sin(theta)) / (1. + (d / 2.) * sin(theta)));
178 gamma = (0.5 + beta) * cos(theta);
179 alpha = 0.5 * (0.5 - beta) * sqrt(1. + pow((
W - (1. /
W)) / d, 2.));
181 coeffs->
a1 = 2. * gamma;
182 coeffs->
a2 = -2. * beta;
188 }
else if (!strcmp(
ctx->filter->name,
"asuperstop")) {
189 double alpha, beta, gamma, theta;
193 s->filter_count =
s->order / 2;
194 d_E = (2. * tan(theta_0 / (2. *
s->qfactor))) / sin(theta_0);
196 for (
int b = 0;
b <
s->filter_count;
b += 2) {
197 double D = 2. * sin(((
b + 1) *
M_PI) / (2. *
s->filter_count));
198 double A = (1. + pow((d_E / 2.), 2)) / (
D * d_E / 2.);
199 double d = sqrt((d_E *
D) / (
A + sqrt(
A *
A - 1.)));
200 double B =
D * (d_E / 2.) / d;
201 double W =
B + sqrt(
B *
B - 1.);
203 for (
int j = 0; j < 2; j++) {
207 theta = 2. * atan(tan(theta_0 / 2.) /
W);
209 theta = 2. * atan(
W * tan(theta_0 / 2.));
211 beta = 0.5 * ((1. - (d / 2.) * sin(theta)) / (1. + (d / 2.) * sin(theta)));
212 gamma = (0.5 + beta) * cos(theta);
213 alpha = 0.5 * (0.5 + beta) * ((1. - cos(theta)) / (1. - cos(theta_0)));
215 coeffs->
a1 = 2. * gamma;
216 coeffs->
a2 = -2. * beta;
218 coeffs->
b1 = -4. *
alpha * cos(theta_0);
231 #define FILTER(name, type) \
232 static int filter_channels_## name(AVFilterContext *ctx, void *arg, \
233 int jobnr, int nb_jobs) \
235 ASuperCutContext *s = ctx->priv; \
236 ThreadData *td = arg; \
237 AVFrame *out = td->out; \
238 AVFrame *in = td->in; \
239 const int start = (in->channels * jobnr) / nb_jobs; \
240 const int end = (in->channels * (jobnr+1)) / nb_jobs; \
241 const double level = s->level; \
243 for (int ch = start; ch < end; ch++) { \
244 const type *src = (const type *)in->extended_data[ch]; \
245 type *dst = (type *)out->extended_data[ch]; \
247 for (int b = 0; b < s->filter_count; b++) { \
248 BiquadCoeffs *coeffs = &s->coeffs[b]; \
249 const type a1 = coeffs->a1; \
250 const type a2 = coeffs->a2; \
251 const type b0 = coeffs->b0; \
252 const type b1 = coeffs->b1; \
253 const type b2 = coeffs->b2; \
254 type *w = ((type *)s->w->extended_data[ch]) + b * 2; \
256 for (int n = 0; n < in->nb_samples; n++) { \
257 type sin = b ? dst[n] : src[n] * level; \
258 type sout = sin * b0 + w[0]; \
260 w[0] = b1 * sin + w[1] + a1 * sout; \
261 w[1] = b2 * sin + a2 * sout; \
279 switch (inlink->format) {
323 char *res,
int res_len,
int flags)
341 #define OFFSET(x) offsetof(ASuperCutContext, x)
342 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
376 .priv_class = &asupercut_class,
399 .priv_class = &asubcut_class,
416 #define asuperpass_options asuperpass_asuperstop_options
420 .
name =
"asuperpass",
424 .priv_class = &asuperpass_class,
433 #define asuperstop_options asuperpass_asuperstop_options
437 .
name =
"asuperstop",
441 .priv_class = &asuperstop_class,
static enum AVSampleFormat sample_fmts[]
static int get_coeffs(AVFilterContext *ctx)
AVFILTER_DEFINE_CLASS(asupercut)
static int query_formats(AVFilterContext *ctx)
static int config_input(AVFilterLink *inlink)
static const AVFilterPad inputs[]
static const AVFilterPad outputs[]
static void calc_q_factors(int n, double *q)
static const AVOption asuperpass_asuperstop_options[]
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
#define FILTER(name, type)
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
static const AVOption asubcut_options[]
static av_cold void uninit(AVFilterContext *ctx)
AVFilter ff_af_asuperpass
AVFilter ff_af_asuperstop
static const AVOption asupercut_options[]
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Main libavfilter public API header.
#define flags(name, subs,...)
audio channel layout utility functions
internal math functions header
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
AVSampleFormat
Audio sample formats.
@ AV_SAMPLE_FMT_FLTP
float, planar
@ AV_SAMPLE_FMT_DBLP
double, planar
static const int16_t alpha[]
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
enum MovChannelLayoutTag * layouts
int(* filter_channels)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Describe the class of an AVClass context structure.
A list of supported channel layouts.
A link between two filters.
int channels
Number of channels.
int sample_rate
samples per second
AVFilterContext * dst
dest filter
A filter pad used for either input or output.
const char * name
Pad name.
const char * name
Filter name.
AVFormatInternal * internal
An opaque field for libavformat internal usage.
This structure describes decoded (raw) audio or video data.
Used for passing data between threads.