FFmpeg  4.4.4
vf_overlay.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2010 Stefano Sabatini
3  * Copyright (c) 2010 Baptiste Coudurier
4  * Copyright (c) 2007 Bobby Bingham
5  *
6  * This file is part of FFmpeg.
7  *
8  * FFmpeg is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2.1 of the License, or (at your option) any later version.
12  *
13  * FFmpeg is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with FFmpeg; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21  */
22 
23 /**
24  * @file
25  * overlay one video on top of another
26  */
27 
28 #include "avfilter.h"
29 #include "formats.h"
30 #include "libavutil/common.h"
31 #include "libavutil/eval.h"
32 #include "libavutil/avstring.h"
33 #include "libavutil/pixdesc.h"
34 #include "libavutil/imgutils.h"
35 #include "libavutil/mathematics.h"
36 #include "libavutil/opt.h"
37 #include "libavutil/timestamp.h"
38 #include "internal.h"
39 #include "drawutils.h"
40 #include "framesync.h"
41 #include "video.h"
42 #include "vf_overlay.h"
43 
44 typedef struct ThreadData {
45  AVFrame *dst, *src;
46 } ThreadData;
47 
48 static const char *const var_names[] = {
49  "main_w", "W", ///< width of the main video
50  "main_h", "H", ///< height of the main video
51  "overlay_w", "w", ///< width of the overlay video
52  "overlay_h", "h", ///< height of the overlay video
53  "hsub",
54  "vsub",
55  "x",
56  "y",
57  "n", ///< number of frame
58  "pos", ///< position in the file
59  "t", ///< timestamp expressed in seconds
60  NULL
61 };
62 
63 #define MAIN 0
64 #define OVERLAY 1
65 
66 #define R 0
67 #define G 1
68 #define B 2
69 #define A 3
70 
71 #define Y 0
72 #define U 1
73 #define V 2
74 
75 enum EvalMode {
79 };
80 
82 {
83  OverlayContext *s = ctx->priv;
84 
85  ff_framesync_uninit(&s->fs);
86  av_expr_free(s->x_pexpr); s->x_pexpr = NULL;
87  av_expr_free(s->y_pexpr); s->y_pexpr = NULL;
88 }
89 
90 static inline int normalize_xy(double d, int chroma_sub)
91 {
92  if (isnan(d))
93  return INT_MAX;
94  return (int)d & ~((1 << chroma_sub) - 1);
95 }
96 
98 {
99  OverlayContext *s = ctx->priv;
100 
101  s->var_values[VAR_X] = av_expr_eval(s->x_pexpr, s->var_values, NULL);
102  s->var_values[VAR_Y] = av_expr_eval(s->y_pexpr, s->var_values, NULL);
103  /* It is necessary if x is expressed from y */
104  s->var_values[VAR_X] = av_expr_eval(s->x_pexpr, s->var_values, NULL);
105  s->x = normalize_xy(s->var_values[VAR_X], s->hsub);
106  s->y = normalize_xy(s->var_values[VAR_Y], s->vsub);
107 }
108 
109 static int set_expr(AVExpr **pexpr, const char *expr, const char *option, void *log_ctx)
110 {
111  int ret;
112  AVExpr *old = NULL;
113 
114  if (*pexpr)
115  old = *pexpr;
116  ret = av_expr_parse(pexpr, expr, var_names,
117  NULL, NULL, NULL, NULL, 0, log_ctx);
118  if (ret < 0) {
119  av_log(log_ctx, AV_LOG_ERROR,
120  "Error when evaluating the expression '%s' for %s\n",
121  expr, option);
122  *pexpr = old;
123  return ret;
124  }
125 
126  av_expr_free(old);
127  return 0;
128 }
129 
130 static int process_command(AVFilterContext *ctx, const char *cmd, const char *args,
131  char *res, int res_len, int flags)
132 {
133  OverlayContext *s = ctx->priv;
134  int ret;
135 
136  if (!strcmp(cmd, "x"))
137  ret = set_expr(&s->x_pexpr, args, cmd, ctx);
138  else if (!strcmp(cmd, "y"))
139  ret = set_expr(&s->y_pexpr, args, cmd, ctx);
140  else
141  ret = AVERROR(ENOSYS);
142 
143  if (ret < 0)
144  return ret;
145 
146  if (s->eval_mode == EVAL_MODE_INIT) {
147  eval_expr(ctx);
148  av_log(ctx, AV_LOG_VERBOSE, "x:%f xi:%d y:%f yi:%d\n",
149  s->var_values[VAR_X], s->x,
150  s->var_values[VAR_Y], s->y);
151  }
152  return ret;
153 }
154 
155 static const enum AVPixelFormat alpha_pix_fmts[] = {
160 };
161 
163 {
164  OverlayContext *s = ctx->priv;
165 
166  /* overlay formats contains alpha, for avoiding conversion with alpha information loss */
167  static const enum AVPixelFormat main_pix_fmts_yuv420[] = {
171  };
172  static const enum AVPixelFormat overlay_pix_fmts_yuv420[] = {
174  };
175 
176  static const enum AVPixelFormat main_pix_fmts_yuv420p10[] = {
179  };
180  static const enum AVPixelFormat overlay_pix_fmts_yuv420p10[] = {
182  };
183 
184  static const enum AVPixelFormat main_pix_fmts_yuv422[] = {
186  };
187  static const enum AVPixelFormat overlay_pix_fmts_yuv422[] = {
189  };
190 
191  static const enum AVPixelFormat main_pix_fmts_yuv422p10[] = {
193  };
194  static const enum AVPixelFormat overlay_pix_fmts_yuv422p10[] = {
196  };
197 
198  static const enum AVPixelFormat main_pix_fmts_yuv444[] = {
200  };
201  static const enum AVPixelFormat overlay_pix_fmts_yuv444[] = {
203  };
204 
205  static const enum AVPixelFormat main_pix_fmts_gbrp[] = {
207  };
208  static const enum AVPixelFormat overlay_pix_fmts_gbrp[] = {
210  };
211 
212  static const enum AVPixelFormat main_pix_fmts_rgb[] = {
217  };
218  static const enum AVPixelFormat overlay_pix_fmts_rgb[] = {
222  };
223 
224  const enum AVPixelFormat *main_formats, *overlay_formats;
226  int ret;
227 
228  switch (s->format) {
230  main_formats = main_pix_fmts_yuv420;
231  overlay_formats = overlay_pix_fmts_yuv420;
232  break;
234  main_formats = main_pix_fmts_yuv420p10;
235  overlay_formats = overlay_pix_fmts_yuv420p10;
236  break;
238  main_formats = main_pix_fmts_yuv422;
239  overlay_formats = overlay_pix_fmts_yuv422;
240  break;
242  main_formats = main_pix_fmts_yuv422p10;
243  overlay_formats = overlay_pix_fmts_yuv422p10;
244  break;
246  main_formats = main_pix_fmts_yuv444;
247  overlay_formats = overlay_pix_fmts_yuv444;
248  break;
249  case OVERLAY_FORMAT_RGB:
250  main_formats = main_pix_fmts_rgb;
251  overlay_formats = overlay_pix_fmts_rgb;
252  break;
253  case OVERLAY_FORMAT_GBRP:
254  main_formats = main_pix_fmts_gbrp;
255  overlay_formats = overlay_pix_fmts_gbrp;
256  break;
257  case OVERLAY_FORMAT_AUTO:
259  default:
260  av_assert0(0);
261  }
262 
263  formats = ff_make_format_list(main_formats);
264  if ((ret = ff_formats_ref(formats, &ctx->inputs[MAIN]->outcfg.formats)) < 0 ||
265  (ret = ff_formats_ref(formats, &ctx->outputs[MAIN]->incfg.formats)) < 0)
266  return ret;
267 
268  return ff_formats_ref(ff_make_format_list(overlay_formats),
269  &ctx->inputs[OVERLAY]->outcfg.formats);
270 }
271 
273 {
274  AVFilterContext *ctx = inlink->dst;
275  OverlayContext *s = inlink->dst->priv;
276  int ret;
277  const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format);
278 
279  av_image_fill_max_pixsteps(s->overlay_pix_step, NULL, pix_desc);
280 
281  /* Finish the configuration by evaluating the expressions
282  now when both inputs are configured. */
283  s->var_values[VAR_MAIN_W ] = s->var_values[VAR_MW] = ctx->inputs[MAIN ]->w;
284  s->var_values[VAR_MAIN_H ] = s->var_values[VAR_MH] = ctx->inputs[MAIN ]->h;
285  s->var_values[VAR_OVERLAY_W] = s->var_values[VAR_OW] = ctx->inputs[OVERLAY]->w;
286  s->var_values[VAR_OVERLAY_H] = s->var_values[VAR_OH] = ctx->inputs[OVERLAY]->h;
287  s->var_values[VAR_HSUB] = 1<<pix_desc->log2_chroma_w;
288  s->var_values[VAR_VSUB] = 1<<pix_desc->log2_chroma_h;
289  s->var_values[VAR_X] = NAN;
290  s->var_values[VAR_Y] = NAN;
291  s->var_values[VAR_N] = 0;
292  s->var_values[VAR_T] = NAN;
293  s->var_values[VAR_POS] = NAN;
294 
295  if ((ret = set_expr(&s->x_pexpr, s->x_expr, "x", ctx)) < 0 ||
296  (ret = set_expr(&s->y_pexpr, s->y_expr, "y", ctx)) < 0)
297  return ret;
298 
299  s->overlay_is_packed_rgb =
300  ff_fill_rgba_map(s->overlay_rgba_map, inlink->format) >= 0;
301  s->overlay_has_alpha = ff_fmt_is_in(inlink->format, alpha_pix_fmts);
302 
303  if (s->eval_mode == EVAL_MODE_INIT) {
304  eval_expr(ctx);
305  av_log(ctx, AV_LOG_VERBOSE, "x:%f xi:%d y:%f yi:%d\n",
306  s->var_values[VAR_X], s->x,
307  s->var_values[VAR_Y], s->y);
308  }
309 
311  "main w:%d h:%d fmt:%s overlay w:%d h:%d fmt:%s\n",
312  ctx->inputs[MAIN]->w, ctx->inputs[MAIN]->h,
313  av_get_pix_fmt_name(ctx->inputs[MAIN]->format),
314  ctx->inputs[OVERLAY]->w, ctx->inputs[OVERLAY]->h,
315  av_get_pix_fmt_name(ctx->inputs[OVERLAY]->format));
316  return 0;
317 }
318 
319 static int config_output(AVFilterLink *outlink)
320 {
321  AVFilterContext *ctx = outlink->src;
322  OverlayContext *s = ctx->priv;
323  int ret;
324 
325  if ((ret = ff_framesync_init_dualinput(&s->fs, ctx)) < 0)
326  return ret;
327 
328  outlink->w = ctx->inputs[MAIN]->w;
329  outlink->h = ctx->inputs[MAIN]->h;
330  outlink->time_base = ctx->inputs[MAIN]->time_base;
331 
332  return ff_framesync_configure(&s->fs);
333 }
334 
335 // divide by 255 and round to nearest
336 // apply a fast variant: (X+127)/255 = ((X+127)*257+257)>>16 = ((X+128)*257)>>16
337 #define FAST_DIV255(x) ((((x) + 128) * 257) >> 16)
338 
339 // calculate the unpremultiplied alpha, applying the general equation:
340 // alpha = alpha_overlay / ( (alpha_main + alpha_overlay) - (alpha_main * alpha_overlay) )
341 // (((x) << 16) - ((x) << 9) + (x)) is a faster version of: 255 * 255 * x
342 // ((((x) + (y)) << 8) - ((x) + (y)) - (y) * (x)) is a faster version of: 255 * (x + y)
343 #define UNPREMULTIPLY_ALPHA(x, y) ((((x) << 16) - ((x) << 9) + (x)) / ((((x) + (y)) << 8) - ((x) + (y)) - (y) * (x)))
344 
345 /**
346  * Blend image in src to destination buffer dst at position (x, y).
347  */
348 
350  AVFrame *dst, const AVFrame *src,
351  int main_has_alpha, int x, int y,
352  int is_straight, int jobnr, int nb_jobs)
353 {
354  OverlayContext *s = ctx->priv;
355  int i, imax, j, jmax;
356  const int src_w = src->width;
357  const int src_h = src->height;
358  const int dst_w = dst->width;
359  const int dst_h = dst->height;
360  uint8_t alpha; ///< the amount of overlay to blend on to main
361  const int dr = s->main_rgba_map[R];
362  const int dg = s->main_rgba_map[G];
363  const int db = s->main_rgba_map[B];
364  const int da = s->main_rgba_map[A];
365  const int dstep = s->main_pix_step[0];
366  const int sr = s->overlay_rgba_map[R];
367  const int sg = s->overlay_rgba_map[G];
368  const int sb = s->overlay_rgba_map[B];
369  const int sa = s->overlay_rgba_map[A];
370  const int sstep = s->overlay_pix_step[0];
371  int slice_start, slice_end;
372  uint8_t *S, *sp, *d, *dp;
373 
374  i = FFMAX(-y, 0);
375  imax = FFMIN3(-y + dst_h, FFMIN(src_h, dst_h), y + src_h);
376 
377  slice_start = i + (imax * jobnr) / nb_jobs;
378  slice_end = i + (imax * (jobnr+1)) / nb_jobs;
379 
380  sp = src->data[0] + (slice_start) * src->linesize[0];
381  dp = dst->data[0] + (y + slice_start) * dst->linesize[0];
382 
383  for (i = slice_start; i < slice_end; i++) {
384  j = FFMAX(-x, 0);
385  S = sp + j * sstep;
386  d = dp + (x+j) * dstep;
387 
388  for (jmax = FFMIN(-x + dst_w, src_w); j < jmax; j++) {
389  alpha = S[sa];
390 
391  // if the main channel has an alpha channel, alpha has to be calculated
392  // to create an un-premultiplied (straight) alpha value
393  if (main_has_alpha && alpha != 0 && alpha != 255) {
394  uint8_t alpha_d = d[da];
395  alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d);
396  }
397 
398  switch (alpha) {
399  case 0:
400  break;
401  case 255:
402  d[dr] = S[sr];
403  d[dg] = S[sg];
404  d[db] = S[sb];
405  break;
406  default:
407  // main_value = main_value * (1 - alpha) + overlay_value * alpha
408  // since alpha is in the range 0-255, the result must divided by 255
409  d[dr] = is_straight ? FAST_DIV255(d[dr] * (255 - alpha) + S[sr] * alpha) :
410  FFMIN(FAST_DIV255(d[dr] * (255 - alpha)) + S[sr], 255);
411  d[dg] = is_straight ? FAST_DIV255(d[dg] * (255 - alpha) + S[sg] * alpha) :
412  FFMIN(FAST_DIV255(d[dg] * (255 - alpha)) + S[sg], 255);
413  d[db] = is_straight ? FAST_DIV255(d[db] * (255 - alpha) + S[sb] * alpha) :
414  FFMIN(FAST_DIV255(d[db] * (255 - alpha)) + S[sb], 255);
415  }
416  if (main_has_alpha) {
417  switch (alpha) {
418  case 0:
419  break;
420  case 255:
421  d[da] = S[sa];
422  break;
423  default:
424  // apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha
425  d[da] += FAST_DIV255((255 - d[da]) * S[sa]);
426  }
427  }
428  d += dstep;
429  S += sstep;
430  }
431  dp += dst->linesize[0];
432  sp += src->linesize[0];
433  }
434 }
435 
436 #define DEFINE_BLEND_PLANE(depth, nbits) \
437 static av_always_inline void blend_plane_##depth##_##nbits##bits(AVFilterContext *ctx, \
438  AVFrame *dst, const AVFrame *src, \
439  int src_w, int src_h, \
440  int dst_w, int dst_h, \
441  int i, int hsub, int vsub, \
442  int x, int y, \
443  int main_has_alpha, \
444  int dst_plane, \
445  int dst_offset, \
446  int dst_step, \
447  int straight, \
448  int yuv, \
449  int jobnr, \
450  int nb_jobs) \
451 { \
452  OverlayContext *octx = ctx->priv; \
453  int src_wp = AV_CEIL_RSHIFT(src_w, hsub); \
454  int src_hp = AV_CEIL_RSHIFT(src_h, vsub); \
455  int dst_wp = AV_CEIL_RSHIFT(dst_w, hsub); \
456  int dst_hp = AV_CEIL_RSHIFT(dst_h, vsub); \
457  int yp = y>>vsub; \
458  int xp = x>>hsub; \
459  uint##depth##_t *s, *sp, *d, *dp, *dap, *a, *da, *ap; \
460  int jmax, j, k, kmax; \
461  int slice_start, slice_end; \
462  const uint##depth##_t max = (1 << nbits) - 1; \
463  const uint##depth##_t mid = (1 << (nbits -1)) ; \
464  int bytes = depth / 8; \
465  \
466  dst_step /= bytes; \
467  j = FFMAX(-yp, 0); \
468  jmax = FFMIN3(-yp + dst_hp, FFMIN(src_hp, dst_hp), yp + src_hp); \
469  \
470  slice_start = j + (jmax * jobnr) / nb_jobs; \
471  slice_end = j + (jmax * (jobnr+1)) / nb_jobs; \
472  \
473  sp = (uint##depth##_t *)(src->data[i] + (slice_start) * src->linesize[i]); \
474  dp = (uint##depth##_t *)(dst->data[dst_plane] \
475  + (yp + slice_start) * dst->linesize[dst_plane] \
476  + dst_offset); \
477  ap = (uint##depth##_t *)(src->data[3] + (slice_start << vsub) * src->linesize[3]); \
478  dap = (uint##depth##_t *)(dst->data[3] + ((yp + slice_start) << vsub) * dst->linesize[3]); \
479  \
480  for (j = slice_start; j < slice_end; j++) { \
481  k = FFMAX(-xp, 0); \
482  d = dp + (xp+k) * dst_step; \
483  s = sp + k; \
484  a = ap + (k<<hsub); \
485  da = dap + ((xp+k) << hsub); \
486  kmax = FFMIN(-xp + dst_wp, src_wp); \
487  \
488  if (nbits == 8 && ((vsub && j+1 < src_hp) || !vsub) && octx->blend_row[i]) { \
489  int c = octx->blend_row[i]((uint8_t*)d, (uint8_t*)da, (uint8_t*)s, \
490  (uint8_t*)a, kmax - k, src->linesize[3]); \
491  \
492  s += c; \
493  d += dst_step * c; \
494  da += (1 << hsub) * c; \
495  a += (1 << hsub) * c; \
496  k += c; \
497  } \
498  for (; k < kmax; k++) { \
499  int alpha_v, alpha_h, alpha; \
500  \
501  /* average alpha for color components, improve quality */ \
502  if (hsub && vsub && j+1 < src_hp && k+1 < src_wp) { \
503  alpha = (a[0] + a[src->linesize[3]] + \
504  a[1] + a[src->linesize[3]+1]) >> 2; \
505  } else if (hsub || vsub) { \
506  alpha_h = hsub && k+1 < src_wp ? \
507  (a[0] + a[1]) >> 1 : a[0]; \
508  alpha_v = vsub && j+1 < src_hp ? \
509  (a[0] + a[src->linesize[3]]) >> 1 : a[0]; \
510  alpha = (alpha_v + alpha_h) >> 1; \
511  } else \
512  alpha = a[0]; \
513  /* if the main channel has an alpha channel, alpha has to be calculated */ \
514  /* to create an un-premultiplied (straight) alpha value */ \
515  if (main_has_alpha && alpha != 0 && alpha != max) { \
516  /* average alpha for color components, improve quality */ \
517  uint8_t alpha_d; \
518  if (hsub && vsub && j+1 < src_hp && k+1 < src_wp) { \
519  alpha_d = (da[0] + da[dst->linesize[3]] + \
520  da[1] + da[dst->linesize[3]+1]) >> 2; \
521  } else if (hsub || vsub) { \
522  alpha_h = hsub && k+1 < src_wp ? \
523  (da[0] + da[1]) >> 1 : da[0]; \
524  alpha_v = vsub && j+1 < src_hp ? \
525  (da[0] + da[dst->linesize[3]]) >> 1 : da[0]; \
526  alpha_d = (alpha_v + alpha_h) >> 1; \
527  } else \
528  alpha_d = da[0]; \
529  alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d); \
530  } \
531  if (straight) { \
532  if (nbits > 8) \
533  *d = (*d * (max - alpha) + *s * alpha) / max; \
534  else \
535  *d = FAST_DIV255(*d * (255 - alpha) + *s * alpha); \
536  } else { \
537  if (nbits > 8) { \
538  if (i && yuv) \
539  *d = av_clip((*d * (max - alpha) + *s * alpha) / max + *s - mid, -mid, mid) + mid; \
540  else \
541  *d = FFMIN((*d * (max - alpha) + *s * alpha) / max + *s, max); \
542  } else { \
543  if (i && yuv) \
544  *d = av_clip(FAST_DIV255((*d - mid) * (max - alpha)) + *s - mid, -mid, mid) + mid; \
545  else \
546  *d = FFMIN(FAST_DIV255(*d * (max - alpha)) + *s, max); \
547  } \
548  } \
549  s++; \
550  d += dst_step; \
551  da += 1 << hsub; \
552  a += 1 << hsub; \
553  } \
554  dp += dst->linesize[dst_plane] / bytes; \
555  sp += src->linesize[i] / bytes; \
556  ap += (1 << vsub) * src->linesize[3] / bytes; \
557  dap += (1 << vsub) * dst->linesize[3] / bytes; \
558  } \
559 }
560 DEFINE_BLEND_PLANE(8, 8)
561 DEFINE_BLEND_PLANE(16, 10)
562 
563 #define DEFINE_ALPHA_COMPOSITE(depth, nbits) \
564 static inline void alpha_composite_##depth##_##nbits##bits(const AVFrame *src, const AVFrame *dst, \
565  int src_w, int src_h, \
566  int dst_w, int dst_h, \
567  int x, int y, \
568  int jobnr, int nb_jobs) \
569 { \
570  uint##depth##_t alpha; /* the amount of overlay to blend on to main */ \
571  uint##depth##_t *s, *sa, *d, *da; \
572  int i, imax, j, jmax; \
573  int slice_start, slice_end; \
574  const uint##depth##_t max = (1 << nbits) - 1; \
575  int bytes = depth / 8; \
576  \
577  imax = FFMIN(-y + dst_h, src_h); \
578  slice_start = (imax * jobnr) / nb_jobs; \
579  slice_end = ((imax * (jobnr+1)) / nb_jobs); \
580  \
581  i = FFMAX(-y, 0); \
582  sa = (uint##depth##_t *)(src->data[3] + (i + slice_start) * src->linesize[3]); \
583  da = (uint##depth##_t *)(dst->data[3] + (y + i + slice_start) * dst->linesize[3]); \
584  \
585  for (i = i + slice_start; i < slice_end; i++) { \
586  j = FFMAX(-x, 0); \
587  s = sa + j; \
588  d = da + x+j; \
589  \
590  for (jmax = FFMIN(-x + dst_w, src_w); j < jmax; j++) { \
591  alpha = *s; \
592  if (alpha != 0 && alpha != max) { \
593  uint8_t alpha_d = *d; \
594  alpha = UNPREMULTIPLY_ALPHA(alpha, alpha_d); \
595  } \
596  if (alpha == max) \
597  *d = *s; \
598  else if (alpha > 0) { \
599  /* apply alpha compositing: main_alpha += (1-main_alpha) * overlay_alpha */ \
600  if (nbits > 8) \
601  *d += (max - *d) * *s / max; \
602  else \
603  *d += FAST_DIV255((max - *d) * *s); \
604  } \
605  d += 1; \
606  s += 1; \
607  } \
608  da += dst->linesize[3] / bytes; \
609  sa += src->linesize[3] / bytes; \
610  } \
611 }
614 
615 #define DEFINE_BLEND_SLICE_YUV(depth, nbits) \
616 static av_always_inline void blend_slice_yuv_##depth##_##nbits##bits(AVFilterContext *ctx, \
617  AVFrame *dst, const AVFrame *src, \
618  int hsub, int vsub, \
619  int main_has_alpha, \
620  int x, int y, \
621  int is_straight, \
622  int jobnr, int nb_jobs) \
623 { \
624  OverlayContext *s = ctx->priv; \
625  const int src_w = src->width; \
626  const int src_h = src->height; \
627  const int dst_w = dst->width; \
628  const int dst_h = dst->height; \
629  \
630  blend_plane_##depth##_##nbits##bits(ctx, dst, src, src_w, src_h, dst_w, dst_h, 0, 0, 0, \
631  x, y, main_has_alpha, s->main_desc->comp[0].plane, s->main_desc->comp[0].offset, \
632  s->main_desc->comp[0].step, is_straight, 1, jobnr, nb_jobs); \
633  blend_plane_##depth##_##nbits##bits(ctx, dst, src, src_w, src_h, dst_w, dst_h, 1, hsub, vsub, \
634  x, y, main_has_alpha, s->main_desc->comp[1].plane, s->main_desc->comp[1].offset, \
635  s->main_desc->comp[1].step, is_straight, 1, jobnr, nb_jobs); \
636  blend_plane_##depth##_##nbits##bits(ctx, dst, src, src_w, src_h, dst_w, dst_h, 2, hsub, vsub, \
637  x, y, main_has_alpha, s->main_desc->comp[2].plane, s->main_desc->comp[2].offset, \
638  s->main_desc->comp[2].step, is_straight, 1, jobnr, nb_jobs); \
639  \
640  if (main_has_alpha) \
641  alpha_composite_##depth##_##nbits##bits(src, dst, src_w, src_h, dst_w, dst_h, x, y, \
642  jobnr, nb_jobs); \
643 }
646 
648  AVFrame *dst, const AVFrame *src,
649  int hsub, int vsub,
650  int main_has_alpha,
651  int x, int y,
652  int is_straight,
653  int jobnr,
654  int nb_jobs)
655 {
656  OverlayContext *s = ctx->priv;
657  const int src_w = src->width;
658  const int src_h = src->height;
659  const int dst_w = dst->width;
660  const int dst_h = dst->height;
661 
662  blend_plane_8_8bits(ctx, dst, src, src_w, src_h, dst_w, dst_h, 0, 0, 0, x, y, main_has_alpha,
663  s->main_desc->comp[1].plane, s->main_desc->comp[1].offset, s->main_desc->comp[1].step, is_straight, 0,
664  jobnr, nb_jobs);
665  blend_plane_8_8bits(ctx, dst, src, src_w, src_h, dst_w, dst_h, 1, hsub, vsub, x, y, main_has_alpha,
666  s->main_desc->comp[2].plane, s->main_desc->comp[2].offset, s->main_desc->comp[2].step, is_straight, 0,
667  jobnr, nb_jobs);
668  blend_plane_8_8bits(ctx, dst, src, src_w, src_h, dst_w, dst_h, 2, hsub, vsub, x, y, main_has_alpha,
669  s->main_desc->comp[0].plane, s->main_desc->comp[0].offset, s->main_desc->comp[0].step, is_straight, 0,
670  jobnr, nb_jobs);
671 
672  if (main_has_alpha)
673  alpha_composite_8_8bits(src, dst, src_w, src_h, dst_w, dst_h, x, y, jobnr, nb_jobs);
674 }
675 
676 static int blend_slice_yuv420(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
677 {
678  OverlayContext *s = ctx->priv;
679  ThreadData *td = arg;
680  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 1, 0, s->x, s->y, 1, jobnr, nb_jobs);
681  return 0;
682 }
683 
684 static int blend_slice_yuva420(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
685 {
686  OverlayContext *s = ctx->priv;
687  ThreadData *td = arg;
688  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 1, 1, s->x, s->y, 1, jobnr, nb_jobs);
689  return 0;
690 }
691 
692 static int blend_slice_yuv420p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
693 {
694  OverlayContext *s = ctx->priv;
695  ThreadData *td = arg;
696  blend_slice_yuv_16_10bits(ctx, td->dst, td->src, 1, 1, 0, s->x, s->y, 1, jobnr, nb_jobs);
697  return 0;
698 }
699 
700 static int blend_slice_yuva420p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
701 {
702  OverlayContext *s = ctx->priv;
703  ThreadData *td = arg;
704  blend_slice_yuv_16_10bits(ctx, td->dst, td->src, 1, 1, 1, s->x, s->y, 1, jobnr, nb_jobs);
705  return 0;
706 }
707 
708 static int blend_slice_yuv422p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
709 {
710  OverlayContext *s = ctx->priv;
711  ThreadData *td = arg;
712  blend_slice_yuv_16_10bits(ctx, td->dst, td->src, 1, 0, 0, s->x, s->y, 1, jobnr, nb_jobs);
713  return 0;
714 }
715 
716 static int blend_slice_yuva422p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
717 {
718  OverlayContext *s = ctx->priv;
719  ThreadData *td = arg;
720  blend_slice_yuv_16_10bits(ctx, td->dst, td->src, 1, 0, 1, s->x, s->y, 1, jobnr, nb_jobs);
721  return 0;
722 }
723 
724 static int blend_slice_yuv422(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
725 {
726  OverlayContext *s = ctx->priv;
727  ThreadData *td = arg;
728  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 0, 0, s->x, s->y, 1, jobnr, nb_jobs);
729  return 0;
730 }
731 
732 static int blend_slice_yuva422(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
733 {
734  OverlayContext *s = ctx->priv;
735  ThreadData *td = arg;
736  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 0, 1, s->x, s->y, 1, jobnr, nb_jobs);
737  return 0;
738 }
739 
740 static int blend_slice_yuv444(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
741 {
742  OverlayContext *s = ctx->priv;
743  ThreadData *td = arg;
744  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 1, jobnr, nb_jobs);
745  return 0;
746 }
747 
748 static int blend_slice_yuva444(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
749 {
750  OverlayContext *s = ctx->priv;
751  ThreadData *td = arg;
752  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 1, jobnr, nb_jobs);
753  return 0;
754 }
755 
756 static int blend_slice_gbrp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
757 {
758  OverlayContext *s = ctx->priv;
759  ThreadData *td = arg;
760  blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 1, jobnr, nb_jobs);
761  return 0;
762 }
763 
764 static int blend_slice_gbrap(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
765 {
766  OverlayContext *s = ctx->priv;
767  ThreadData *td = arg;
768  blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 1, jobnr, nb_jobs);
769  return 0;
770 }
771 
772 static int blend_slice_yuv420_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
773 {
774  OverlayContext *s = ctx->priv;
775  ThreadData *td = arg;
776  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 1, 0, s->x, s->y, 0, jobnr, nb_jobs);
777  return 0;
778 }
779 
780 static int blend_slice_yuva420_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
781 {
782  OverlayContext *s = ctx->priv;
783  ThreadData *td = arg;
784  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 1, 1, s->x, s->y, 0, jobnr, nb_jobs);
785  return 0;
786 }
787 
788 static int blend_slice_yuv422_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
789 {
790  OverlayContext *s = ctx->priv;
791  ThreadData *td = arg;
792  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 0, 0, s->x, s->y, 0, jobnr, nb_jobs);
793  return 0;
794 }
795 
796 static int blend_slice_yuva422_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
797 {
798  OverlayContext *s = ctx->priv;
799  ThreadData *td = arg;
800  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 1, 0, 1, s->x, s->y, 0, jobnr, nb_jobs);
801  return 0;
802 }
803 
804 static int blend_slice_yuv444_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
805 {
806  OverlayContext *s = ctx->priv;
807  ThreadData *td = arg;
808  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 0, jobnr, nb_jobs);
809  return 0;
810 }
811 
812 static int blend_slice_yuva444_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
813 {
814  OverlayContext *s = ctx->priv;
815  ThreadData *td = arg;
816  blend_slice_yuv_8_8bits(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 0, jobnr, nb_jobs);
817  return 0;
818 }
819 
820 static int blend_slice_gbrp_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
821 {
822  OverlayContext *s = ctx->priv;
823  ThreadData *td = arg;
824  blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 0, s->x, s->y, 0, jobnr, nb_jobs);
825  return 0;
826 }
827 
828 static int blend_slice_gbrap_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
829 {
830  OverlayContext *s = ctx->priv;
831  ThreadData *td = arg;
832  blend_slice_planar_rgb(ctx, td->dst, td->src, 0, 0, 1, s->x, s->y, 0, jobnr, nb_jobs);
833  return 0;
834 }
835 
836 static int blend_slice_rgb(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
837 {
838  OverlayContext *s = ctx->priv;
839  ThreadData *td = arg;
840  blend_slice_packed_rgb(ctx, td->dst, td->src, 0, s->x, s->y, 1, jobnr, nb_jobs);
841  return 0;
842 }
843 
844 static int blend_slice_rgba(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
845 {
846  OverlayContext *s = ctx->priv;
847  ThreadData *td = arg;
848  blend_slice_packed_rgb(ctx, td->dst, td->src, 1, s->x, s->y, 1, jobnr, nb_jobs);
849  return 0;
850 }
851 
852 static int blend_slice_rgb_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
853 {
854  OverlayContext *s = ctx->priv;
855  ThreadData *td = arg;
856  blend_slice_packed_rgb(ctx, td->dst, td->src, 0, s->x, s->y, 0, jobnr, nb_jobs);
857  return 0;
858 }
859 
860 static int blend_slice_rgba_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
861 {
862  OverlayContext *s = ctx->priv;
863  ThreadData *td = arg;
864  blend_slice_packed_rgb(ctx, td->dst, td->src, 1, s->x, s->y, 0, jobnr, nb_jobs);
865  return 0;
866 }
867 
868 static int config_input_main(AVFilterLink *inlink)
869 {
870  OverlayContext *s = inlink->dst->priv;
871  const AVPixFmtDescriptor *pix_desc = av_pix_fmt_desc_get(inlink->format);
872 
873  av_image_fill_max_pixsteps(s->main_pix_step, NULL, pix_desc);
874 
875  s->hsub = pix_desc->log2_chroma_w;
876  s->vsub = pix_desc->log2_chroma_h;
877 
878  s->main_desc = pix_desc;
879 
880  s->main_is_packed_rgb =
881  ff_fill_rgba_map(s->main_rgba_map, inlink->format) >= 0;
882  s->main_has_alpha = ff_fmt_is_in(inlink->format, alpha_pix_fmts);
883  switch (s->format) {
885  s->blend_slice = s->main_has_alpha ? blend_slice_yuva420 : blend_slice_yuv420;
886  break;
888  s->blend_slice = s->main_has_alpha ? blend_slice_yuva420p10 : blend_slice_yuv420p10;
889  break;
891  s->blend_slice = s->main_has_alpha ? blend_slice_yuva422 : blend_slice_yuv422;
892  break;
894  s->blend_slice = s->main_has_alpha ? blend_slice_yuva422p10 : blend_slice_yuv422p10;
895  break;
897  s->blend_slice = s->main_has_alpha ? blend_slice_yuva444 : blend_slice_yuv444;
898  break;
899  case OVERLAY_FORMAT_RGB:
900  s->blend_slice = s->main_has_alpha ? blend_slice_rgba : blend_slice_rgb;
901  break;
902  case OVERLAY_FORMAT_GBRP:
903  s->blend_slice = s->main_has_alpha ? blend_slice_gbrap : blend_slice_gbrp;
904  break;
905  case OVERLAY_FORMAT_AUTO:
906  switch (inlink->format) {
907  case AV_PIX_FMT_YUVA420P:
908  s->blend_slice = blend_slice_yuva420;
909  break;
911  s->blend_slice = blend_slice_yuva420p10;
912  break;
913  case AV_PIX_FMT_YUVA422P:
914  s->blend_slice = blend_slice_yuva422;
915  break;
917  s->blend_slice = blend_slice_yuva422p10;
918  break;
919  case AV_PIX_FMT_YUVA444P:
920  s->blend_slice = blend_slice_yuva444;
921  break;
922  case AV_PIX_FMT_ARGB:
923  case AV_PIX_FMT_RGBA:
924  case AV_PIX_FMT_BGRA:
925  case AV_PIX_FMT_ABGR:
926  s->blend_slice = blend_slice_rgba;
927  break;
928  case AV_PIX_FMT_GBRAP:
929  s->blend_slice = blend_slice_gbrap;
930  break;
931  default:
932  av_assert0(0);
933  break;
934  }
935  break;
936  }
937 
938  if (!s->alpha_format)
939  goto end;
940 
941  switch (s->format) {
943  s->blend_slice = s->main_has_alpha ? blend_slice_yuva420_pm : blend_slice_yuv420_pm;
944  break;
946  s->blend_slice = s->main_has_alpha ? blend_slice_yuva422_pm : blend_slice_yuv422_pm;
947  break;
949  s->blend_slice = s->main_has_alpha ? blend_slice_yuva444_pm : blend_slice_yuv444_pm;
950  break;
951  case OVERLAY_FORMAT_RGB:
952  s->blend_slice = s->main_has_alpha ? blend_slice_rgba_pm : blend_slice_rgb_pm;
953  break;
954  case OVERLAY_FORMAT_GBRP:
955  s->blend_slice = s->main_has_alpha ? blend_slice_gbrap_pm : blend_slice_gbrp_pm;
956  break;
957  case OVERLAY_FORMAT_AUTO:
958  switch (inlink->format) {
959  case AV_PIX_FMT_YUVA420P:
960  s->blend_slice = blend_slice_yuva420_pm;
961  break;
962  case AV_PIX_FMT_YUVA422P:
963  s->blend_slice = blend_slice_yuva422_pm;
964  break;
965  case AV_PIX_FMT_YUVA444P:
966  s->blend_slice = blend_slice_yuva444_pm;
967  break;
968  case AV_PIX_FMT_ARGB:
969  case AV_PIX_FMT_RGBA:
970  case AV_PIX_FMT_BGRA:
971  case AV_PIX_FMT_ABGR:
972  s->blend_slice = blend_slice_rgba_pm;
973  break;
974  case AV_PIX_FMT_GBRAP:
975  s->blend_slice = blend_slice_gbrap_pm;
976  break;
977  default:
978  av_assert0(0);
979  break;
980  }
981  break;
982  }
983 
984 end:
985  if (ARCH_X86)
986  ff_overlay_init_x86(s, s->format, inlink->format,
987  s->alpha_format, s->main_has_alpha);
988 
989  return 0;
990 }
991 
992 static int do_blend(FFFrameSync *fs)
993 {
994  AVFilterContext *ctx = fs->parent;
995  AVFrame *mainpic, *second;
996  OverlayContext *s = ctx->priv;
997  AVFilterLink *inlink = ctx->inputs[0];
998  int ret;
999 
1000  ret = ff_framesync_dualinput_get_writable(fs, &mainpic, &second);
1001  if (ret < 0)
1002  return ret;
1003  if (!second)
1004  return ff_filter_frame(ctx->outputs[0], mainpic);
1005 
1006  if (s->eval_mode == EVAL_MODE_FRAME) {
1007  int64_t pos = mainpic->pkt_pos;
1008 
1009  s->var_values[VAR_N] = inlink->frame_count_out;
1010  s->var_values[VAR_T] = mainpic->pts == AV_NOPTS_VALUE ?
1011  NAN : mainpic->pts * av_q2d(inlink->time_base);
1012  s->var_values[VAR_POS] = pos == -1 ? NAN : pos;
1013 
1014  s->var_values[VAR_OVERLAY_W] = s->var_values[VAR_OW] = second->width;
1015  s->var_values[VAR_OVERLAY_H] = s->var_values[VAR_OH] = second->height;
1016  s->var_values[VAR_MAIN_W ] = s->var_values[VAR_MW] = mainpic->width;
1017  s->var_values[VAR_MAIN_H ] = s->var_values[VAR_MH] = mainpic->height;
1018 
1019  eval_expr(ctx);
1020  av_log(ctx, AV_LOG_DEBUG, "n:%f t:%f pos:%f x:%f xi:%d y:%f yi:%d\n",
1021  s->var_values[VAR_N], s->var_values[VAR_T], s->var_values[VAR_POS],
1022  s->var_values[VAR_X], s->x,
1023  s->var_values[VAR_Y], s->y);
1024  }
1025 
1026  if (s->x < mainpic->width && s->x + second->width >= 0 &&
1027  s->y < mainpic->height && s->y + second->height >= 0) {
1028  ThreadData td;
1029 
1030  td.dst = mainpic;
1031  td.src = second;
1032  ctx->internal->execute(ctx, s->blend_slice, &td, NULL, FFMIN(FFMAX(1, FFMIN3(s->y + second->height, FFMIN(second->height, mainpic->height), mainpic->height - s->y)),
1034  }
1035  return ff_filter_frame(ctx->outputs[0], mainpic);
1036 }
1037 
1039 {
1040  OverlayContext *s = ctx->priv;
1041 
1042  s->fs.on_event = do_blend;
1043  return 0;
1044 }
1045 
1047 {
1048  OverlayContext *s = ctx->priv;
1049  return ff_framesync_activate(&s->fs);
1050 }
1051 
1052 #define OFFSET(x) offsetof(OverlayContext, x)
1053 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
1054 
1055 static const AVOption overlay_options[] = {
1056  { "x", "set the x expression", OFFSET(x_expr), AV_OPT_TYPE_STRING, {.str = "0"}, 0, 0, FLAGS },
1057  { "y", "set the y expression", OFFSET(y_expr), AV_OPT_TYPE_STRING, {.str = "0"}, 0, 0, FLAGS },
1058  { "eof_action", "Action to take when encountering EOF from secondary input ",
1059  OFFSET(fs.opt_eof_action), AV_OPT_TYPE_INT, { .i64 = EOF_ACTION_REPEAT },
1060  EOF_ACTION_REPEAT, EOF_ACTION_PASS, .flags = FLAGS, "eof_action" },
1061  { "repeat", "Repeat the previous frame.", 0, AV_OPT_TYPE_CONST, { .i64 = EOF_ACTION_REPEAT }, .flags = FLAGS, "eof_action" },
1062  { "endall", "End both streams.", 0, AV_OPT_TYPE_CONST, { .i64 = EOF_ACTION_ENDALL }, .flags = FLAGS, "eof_action" },
1063  { "pass", "Pass through the main input.", 0, AV_OPT_TYPE_CONST, { .i64 = EOF_ACTION_PASS }, .flags = FLAGS, "eof_action" },
1064  { "eval", "specify when to evaluate expressions", OFFSET(eval_mode), AV_OPT_TYPE_INT, {.i64 = EVAL_MODE_FRAME}, 0, EVAL_MODE_NB-1, FLAGS, "eval" },
1065  { "init", "eval expressions once during initialization", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_INIT}, .flags = FLAGS, .unit = "eval" },
1066  { "frame", "eval expressions per-frame", 0, AV_OPT_TYPE_CONST, {.i64=EVAL_MODE_FRAME}, .flags = FLAGS, .unit = "eval" },
1067  { "shortest", "force termination when the shortest input terminates", OFFSET(fs.opt_shortest), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
1068  { "format", "set output format", OFFSET(format), AV_OPT_TYPE_INT, {.i64=OVERLAY_FORMAT_YUV420}, 0, OVERLAY_FORMAT_NB-1, FLAGS, "format" },
1069  { "yuv420", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV420}, .flags = FLAGS, .unit = "format" },
1070  { "yuv420p10", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV420P10}, .flags = FLAGS, .unit = "format" },
1071  { "yuv422", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV422}, .flags = FLAGS, .unit = "format" },
1072  { "yuv422p10", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV422P10}, .flags = FLAGS, .unit = "format" },
1073  { "yuv444", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_YUV444}, .flags = FLAGS, .unit = "format" },
1074  { "rgb", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_RGB}, .flags = FLAGS, .unit = "format" },
1075  { "gbrp", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_GBRP}, .flags = FLAGS, .unit = "format" },
1076  { "auto", "", 0, AV_OPT_TYPE_CONST, {.i64=OVERLAY_FORMAT_AUTO}, .flags = FLAGS, .unit = "format" },
1077  { "repeatlast", "repeat overlay of the last overlay frame", OFFSET(fs.opt_repeatlast), AV_OPT_TYPE_BOOL, {.i64=1}, 0, 1, FLAGS },
1078  { "alpha", "alpha format", OFFSET(alpha_format), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, FLAGS, "alpha_format" },
1079  { "straight", "", 0, AV_OPT_TYPE_CONST, {.i64=0}, .flags = FLAGS, .unit = "alpha_format" },
1080  { "premultiplied", "", 0, AV_OPT_TYPE_CONST, {.i64=1}, .flags = FLAGS, .unit = "alpha_format" },
1081  { NULL }
1082 };
1083 
1085 
1087  {
1088  .name = "main",
1089  .type = AVMEDIA_TYPE_VIDEO,
1090  .config_props = config_input_main,
1091  },
1092  {
1093  .name = "overlay",
1094  .type = AVMEDIA_TYPE_VIDEO,
1095  .config_props = config_input_overlay,
1096  },
1097  { NULL }
1098 };
1099 
1101  {
1102  .name = "default",
1103  .type = AVMEDIA_TYPE_VIDEO,
1104  .config_props = config_output,
1105  },
1106  { NULL }
1107 };
1108 
1110  .name = "overlay",
1111  .description = NULL_IF_CONFIG_SMALL("Overlay a video source on top of the input."),
1112  .preinit = overlay_framesync_preinit,
1113  .init = init,
1114  .uninit = uninit,
1115  .priv_size = sizeof(OverlayContext),
1116  .priv_class = &overlay_class,
1118  .activate = activate,
1124 };
@ VAR_T
Definition: aeval.c:51
static const AVFilterPad inputs[]
Definition: af_acontrast.c:193
static const AVFilterPad outputs[]
Definition: af_acontrast.c:203
static const char *const format[]
Definition: af_aiir.c:456
EvalMode
Definition: af_volume.h:39
#define av_always_inline
Definition: attributes.h:45
#define av_cold
Definition: attributes.h:88
uint8_t
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1096
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Definition: avfilter.c:802
Main libavfilter public API header.
@ VAR_VSUB
Definition: boxblur.c:41
@ VAR_HSUB
Definition: boxblur.c:40
#define flags(name, subs,...)
Definition: cbs_av1.c:561
#define s(width, name)
Definition: cbs_vp9.c:257
#define fs(width, name, subs,...)
Definition: cbs_vp9.c:259
common internal and external API header
#define FFMIN(a, b)
Definition: common.h:105
#define FFMAX(a, b)
Definition: common.h:103
#define FFMIN3(a, b, c)
Definition: common.h:106
#define ARCH_X86
Definition: config.h:39
#define NULL
Definition: coverity.c:32
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
Definition: drawutils.c:35
misc drawing utilities
void av_expr_free(AVExpr *e)
Free a parsed expression previously created with av_expr_parse().
Definition: eval.c:336
double av_expr_eval(AVExpr *e, const double *const_values, void *opaque)
Evaluate a previously parsed expression.
Definition: eval.c:766
int av_expr_parse(AVExpr **expr, const char *s, const char *const *const_names, const char *const *func1_names, double(*const *funcs1)(void *, double), const char *const *func2_names, double(*const *funcs2)(void *, double, double), int log_offset, void *log_ctx)
Parse an expression.
Definition: eval.c:685
simple arithmetic expression evaluator
#define S(s, c, i)
int ff_formats_ref(AVFilterFormats *f, AVFilterFormats **ref)
Add ref as a new reference to formats.
Definition: formats.c:466
int ff_fmt_is_in(int fmt, const int *fmts)
Tell if an integer is contained in the provided -1-terminated list of integers.
Definition: formats.c:257
int ff_set_common_formats(AVFilterContext *ctx, AVFilterFormats *formats)
A helper for query_formats() which sets all links to the same list of formats.
Definition: formats.c:587
AVFilterFormats * ff_make_format_list(const int *fmts)
Create a list of supported formats.
Definition: formats.c:286
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
Definition: framesync.c:124
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter's input and try to produce output.
Definition: framesync.c:341
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
Definition: framesync.c:358
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
Definition: framesync.c:290
int ff_framesync_dualinput_get_writable(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
Same as ff_framesync_dualinput_get(), but make sure that f0 is writable.
Definition: framesync.c:396
@ EOF_ACTION_PASS
Definition: framesync.h:29
@ EOF_ACTION_ENDALL
Definition: framesync.h:28
@ EOF_ACTION_REPEAT
Definition: framesync.h:27
@ AV_OPT_TYPE_CONST
Definition: opt.h:234
@ AV_OPT_TYPE_INT
Definition: opt.h:225
@ AV_OPT_TYPE_BOOL
Definition: opt.h:242
@ AV_OPT_TYPE_STRING
Definition: opt.h:229
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Definition: avfilter.h:117
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
Definition: avfilter.h:134
#define AVERROR(e)
Definition: error.h:43
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
Definition: log.h:215
#define AV_LOG_VERBOSE
Detailed information.
Definition: log.h:210
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
static double av_q2d(AVRational a)
Convert an AVRational to a double.
Definition: rational.h:104
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
void av_image_fill_max_pixsteps(int max_pixsteps[4], int max_pixstep_comps[4], const AVPixFmtDescriptor *pixdesc)
Compute the max pixel step for each plane of an image with a format described by pixdesc.
Definition: imgutils.c:35
#define AV_NOPTS_VALUE
Undefined timestamp value.
Definition: avutil.h:248
static const int16_t alpha[]
Definition: ilbcdata.h:55
misc image utilities
int i
Definition: input.c:407
const char * arg
Definition: jacosubdec.c:66
@ VAR_X
Definition: vf_blend.c:52
@ VAR_Y
Definition: vf_blend.c:52
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
option
Definition: libkvazaar.c:325
#define isnan(x)
Definition: libm.h:340
#define NAN
Definition: mathematics.h:64
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
Definition: mpeg12dec.c:2033
AVOptions.
const char * av_get_pix_fmt_name(enum AVPixelFormat pix_fmt)
Return the short name for a pixel format, NULL in case pix_fmt is unknown.
Definition: pixdesc.c:2489
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:2573
#define AV_PIX_FMT_YUV420P10
Definition: pixfmt.h:399
#define AV_PIX_FMT_YUVA420P10
Definition: pixfmt.h:436
#define AV_PIX_FMT_YUV422P10
Definition: pixfmt.h:400
#define AV_PIX_FMT_YUVA422P10
Definition: pixfmt.h:437
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
@ AV_PIX_FMT_NV12
planar YUV 4:2:0, 12bpp, 1 plane for Y and 1 plane for the UV components, which are interleaved (firs...
Definition: pixfmt.h:89
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
Definition: pixfmt.h:66
@ AV_PIX_FMT_NV21
as above, but U and V bytes are swapped
Definition: pixfmt.h:90
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
Definition: pixfmt.h:70
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
Definition: pixfmt.h:92
@ AV_PIX_FMT_BGRA
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
Definition: pixfmt.h:95
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
Definition: pixfmt.h:94
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
Definition: pixfmt.h:101
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:93
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
Definition: pixfmt.h:71
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
Definition: pixfmt.h:177
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
Definition: pixfmt.h:215
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
Definition: pixfmt.h:79
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
Definition: pixfmt.h:176
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
Definition: pixfmt.h:69
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
Definition: pixfmt.h:168
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
Definition: pixfmt.h:80
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
Definition: pixfmt.h:78
#define sp
Definition: regdef.h:63
#define td
Definition: regdef.h:70
@ VAR_OH
Definition: scale_eval.c:46
@ VAR_OW
Definition: scale_eval.c:45
@ VAR_POS
Definition: setts_bsf.c:53
@ VAR_N
Definition: setts_bsf.c:51
formats
Definition: signature.h:48
unsigned int pos
Definition: spdifenc.c:412
Definition: eval.c:157
An instance of a filter.
Definition: avfilter.h:341
void * priv
private data for use by the filter
Definition: avfilter.h:356
A list of supported formats for one end of a filter link.
Definition: formats.h:65
A filter pad used for either input or output.
Definition: internal.h:54
const char * name
Pad name.
Definition: internal.h:60
Filter definition.
Definition: avfilter.h:145
const char * name
Filter name.
Definition: avfilter.h:149
AVFormatInternal * internal
An opaque field for libavformat internal usage.
Definition: avformat.h:1699
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
Definition: frame.h:411
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:332
int width
Definition: frame.h:376
int64_t pkt_pos
reordered pos from the last AVPacket that has been input into the decoder
Definition: frame.h:589
int height
Definition: frame.h:376
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:349
AVOption.
Definition: opt.h:248
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:81
uint8_t log2_chroma_w
Amount to shift the luma width right to find the chroma width.
Definition: pixdesc.h:92
uint8_t log2_chroma_h
Amount to shift the luma height right to find the chroma height.
Definition: pixdesc.h:101
Frame sync structure.
Definition: framesync.h:146
Used for passing data between threads.
Definition: dsddec.c:67
const uint8_t * src
Definition: vf_bm3d.c:56
AVFrame * dst
Definition: vf_blend.c:56
#define av_log(a,...)
#define src
Definition: vp8dsp.c:255
AVFormatContext * ctx
Definition: movenc.c:48
timestamp utils, mostly useful for debugging/logging purposes
@ VAR_MAIN_H
Definition: vf_drawtext.c:117
@ VAR_MAIN_W
Definition: vf_drawtext.c:118
static void hsub(htype *dst, const htype *src, int bins)
Definition: vf_median.c:75
static const AVOption overlay_options[]
Definition: vf_overlay.c:1055
#define B
Definition: vf_overlay.c:68
static int blend_slice_gbrap_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:828
static int blend_slice_yuva422p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:716
#define DEFINE_BLEND_SLICE_YUV(depth, nbits)
Definition: vf_overlay.c:615
static int blend_slice_yuv444_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:804
static int config_input_overlay(AVFilterLink *inlink)
Definition: vf_overlay.c:272
#define MAIN
Definition: vf_overlay.c:63
static int blend_slice_rgba_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:860
#define FAST_DIV255(x)
Definition: vf_overlay.c:337
static int blend_slice_yuv420(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:676
static int blend_slice_yuva444(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:748
static int blend_slice_yuva444_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:812
static int query_formats(AVFilterContext *ctx)
Definition: vf_overlay.c:162
#define R
Definition: vf_overlay.c:66
#define UNPREMULTIPLY_ALPHA(x, y)
Definition: vf_overlay.c:343
static int blend_slice_yuv420p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:692
static int blend_slice_gbrp_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:820
AVFilter ff_vf_overlay
Definition: vf_overlay.c:1109
static int do_blend(FFFrameSync *fs)
Definition: vf_overlay.c:992
#define FLAGS
Definition: vf_overlay.c:1053
static int blend_slice_yuv422_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:788
static int blend_slice_rgb_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:852
static int blend_slice_rgb(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:836
static int blend_slice_yuv422(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:724
static av_always_inline void blend_slice_packed_rgb(AVFilterContext *ctx, AVFrame *dst, const AVFrame *src, int main_has_alpha, int x, int y, int is_straight, int jobnr, int nb_jobs)
Blend image in src to destination buffer dst at position (x, y).
Definition: vf_overlay.c:349
#define A
Definition: vf_overlay.c:69
static const AVFilterPad avfilter_vf_overlay_inputs[]
Definition: vf_overlay.c:1086
static int blend_slice_yuva422(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:732
static int set_expr(AVExpr **pexpr, const char *expr, const char *option, void *log_ctx)
Definition: vf_overlay.c:109
@ EVAL_MODE_NB
Definition: vf_overlay.c:78
@ EVAL_MODE_FRAME
Definition: vf_overlay.c:77
@ EVAL_MODE_INIT
Definition: vf_overlay.c:76
static enum AVPixelFormat alpha_pix_fmts[]
Definition: vf_overlay.c:155
static int config_input_main(AVFilterLink *inlink)
Definition: vf_overlay.c:868
FRAMESYNC_DEFINE_CLASS(overlay, OverlayContext, fs)
static int blend_slice_yuva420p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:700
static int blend_slice_yuva420(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:684
static const char *const var_names[]
Definition: vf_overlay.c:48
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
Definition: vf_overlay.c:130
static int activate(AVFilterContext *ctx)
Definition: vf_overlay.c:1046
#define DEFINE_BLEND_PLANE(depth, nbits)
Definition: vf_overlay.c:436
static av_cold int init(AVFilterContext *ctx)
Definition: vf_overlay.c:1038
static av_cold void uninit(AVFilterContext *ctx)
Definition: vf_overlay.c:81
#define OVERLAY
Definition: vf_overlay.c:64
static int blend_slice_yuva420_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:780
static int blend_slice_yuv420_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:772
static const AVFilterPad avfilter_vf_overlay_outputs[]
Definition: vf_overlay.c:1100
#define OFFSET(x)
Definition: vf_overlay.c:1052
static int blend_slice_yuv444(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:740
static int config_output(AVFilterLink *outlink)
Definition: vf_overlay.c:319
#define DEFINE_ALPHA_COMPOSITE(depth, nbits)
Definition: vf_overlay.c:563
static av_always_inline void blend_slice_planar_rgb(AVFilterContext *ctx, AVFrame *dst, const AVFrame *src, int hsub, int vsub, int main_has_alpha, int x, int y, int is_straight, int jobnr, int nb_jobs)
Definition: vf_overlay.c:647
static int blend_slice_yuv422p10(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:708
static int blend_slice_rgba(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:844
static void eval_expr(AVFilterContext *ctx)
Definition: vf_overlay.c:97
static int blend_slice_gbrap(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:764
#define G
Definition: vf_overlay.c:67
static int blend_slice_yuva422_pm(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:796
static int normalize_xy(double d, int chroma_sub)
Definition: vf_overlay.c:90
static int blend_slice_gbrp(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
Definition: vf_overlay.c:756
@ VAR_OVERLAY_H
Definition: vf_overlay.h:31
@ VAR_MW
Definition: vf_overlay.h:28
@ VAR_MH
Definition: vf_overlay.h:29
@ VAR_OVERLAY_W
Definition: vf_overlay.h:30
@ OVERLAY_FORMAT_YUV420
Definition: vf_overlay.h:43
@ OVERLAY_FORMAT_YUV444
Definition: vf_overlay.h:47
@ OVERLAY_FORMAT_NB
Definition: vf_overlay.h:51
@ OVERLAY_FORMAT_YUV422
Definition: vf_overlay.h:45
@ OVERLAY_FORMAT_YUV420P10
Definition: vf_overlay.h:44
@ OVERLAY_FORMAT_RGB
Definition: vf_overlay.h:48
@ OVERLAY_FORMAT_AUTO
Definition: vf_overlay.h:50
@ OVERLAY_FORMAT_YUV422P10
Definition: vf_overlay.h:46
@ OVERLAY_FORMAT_GBRP
Definition: vf_overlay.h:49
void ff_overlay_init_x86(OverlayContext *s, int format, int pix_format, int alpha_format, int main_has_alpha)