64 #define PRELUT_SIZE 65536
86 #if CONFIG_HALDCLUT_FILTER
101 #define OFFSET(x) offsetof(LUT3DContext, x)
102 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
103 #define TFLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
104 #define COMMON_OPTIONS \
105 { "interp", "select interpolation mode", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, NB_INTERP_MODE-1, TFLAGS, "interp_mode" }, \
106 { "nearest", "use values from the nearest defined points", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_NEAREST}, 0, 0, TFLAGS, "interp_mode" }, \
107 { "trilinear", "interpolate values using the 8 points defining a cube", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TRILINEAR}, 0, 0, TFLAGS, "interp_mode" }, \
108 { "tetrahedral", "interpolate values using a tetrahedron", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_TETRAHEDRAL}, 0, 0, TFLAGS, "interp_mode" }, \
109 { "pyramid", "interpolate values using a pyramid", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PYRAMID}, 0, 0, TFLAGS, "interp_mode" }, \
110 { "prism", "interpolate values using a prism", 0, AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_PRISM}, 0, 0, TFLAGS, "interp_mode" }, \
113 #define EXPONENT_MASK 0x7F800000
114 #define MANTISSA_MASK 0x007FFFFF
115 #define SIGN_MASK 0x80000000
137 static inline float lerpf(
float v0,
float v1,
float f)
139 return v0 + (v1 -
v0) *
f;
150 #define NEAR(x) ((int)((x) + .5))
151 #define PREV(x) ((int)(x))
152 #define NEXT(x) (FFMIN((int)(x) + 1, lut3d->lutsize - 1))
160 return lut3d->lut[
NEAR(
s->r) * lut3d->lutsize2 +
NEAR(
s->g) * lut3d->lutsize +
NEAR(
s->b)];
170 const int lutsize2 = lut3d->lutsize2;
171 const int lutsize = lut3d->lutsize;
174 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
175 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
176 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
177 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
178 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
179 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
180 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
181 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
182 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
196 const int lutsize2 = lut3d->lutsize2;
197 const int lutsize = lut3d->lutsize;
200 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
201 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
202 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
205 if (d.
g > d.
r && d.
b > d.
r) {
206 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
207 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
208 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
210 c.r = c000.
r + (c111.
r - c011.
r) * d.
r + (c010.
r - c000.
r) * d.
g + (c001.
r - c000.
r) * d.
b +
211 (c011.
r - c001.
r - c010.
r + c000.
r) * d.
g * d.
b;
212 c.g = c000.
g + (c111.
g - c011.
g) * d.
r + (c010.
g - c000.
g) * d.
g + (c001.
g - c000.
g) * d.
b +
213 (c011.
g - c001.
g - c010.
g + c000.
g) * d.
g * d.
b;
214 c.b = c000.
b + (c111.
b - c011.
b) * d.
r + (c010.
b - c000.
b) * d.
g + (c001.
b - c000.
b) * d.
b +
215 (c011.
b - c001.
b - c010.
b + c000.
b) * d.
g * d.
b;
216 }
else if (d.
r > d.
g && d.
b > d.
g) {
217 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
218 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
219 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
221 c.r = c000.
r + (c100.
r - c000.
r) * d.
r + (c111.
r - c101.
r) * d.
g + (c001.
r - c000.
r) * d.
b +
222 (c101.
r - c001.
r - c100.
r + c000.
r) * d.
r * d.
b;
223 c.g = c000.
g + (c100.
g - c000.
g) * d.
r + (c111.
g - c101.
g) * d.
g + (c001.
g - c000.
g) * d.
b +
224 (c101.
g - c001.
g - c100.
g + c000.
g) * d.
r * d.
b;
225 c.b = c000.
b + (c100.
b - c000.
b) * d.
r + (c111.
b - c101.
b) * d.
g + (c001.
b - c000.
b) * d.
b +
226 (c101.
b - c001.
b - c100.
b + c000.
b) * d.
r * d.
b;
228 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
229 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
230 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
232 c.r = c000.
r + (c100.
r - c000.
r) * d.
r + (c010.
r - c000.
r) * d.
g + (c111.
r - c110.
r) * d.
b +
233 (c110.
r - c100.
r - c010.
r + c000.
r) * d.
r * d.
g;
234 c.g = c000.
g + (c100.
g - c000.
g) * d.
r + (c010.
g - c000.
g) * d.
g + (c111.
g - c110.
g) * d.
b +
235 (c110.
g - c100.
g - c010.
g + c000.
g) * d.
r * d.
g;
236 c.b = c000.
b + (c100.
b - c000.
b) * d.
r + (c010.
b - c000.
b) * d.
g + (c111.
b - c110.
b) * d.
b +
237 (c110.
b - c100.
b - c010.
b + c000.
b) * d.
r * d.
g;
246 const int lutsize2 = lut3d->lutsize2;
247 const int lutsize = lut3d->lutsize;
250 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
251 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
252 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
253 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
254 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
258 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
259 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
261 c.r = c000.
r + (c001.
r - c000.
r) * d.
b + (c101.
r - c001.
r) * d.
r + (c010.
r - c000.
r) * d.
g +
262 (c000.
r - c010.
r - c001.
r + c011.
r) * d.
b * d.
g +
263 (c001.
r - c011.
r - c101.
r + c111.
r) * d.
r * d.
g;
264 c.g = c000.
g + (c001.
g - c000.
g) * d.
b + (c101.
g - c001.
g) * d.
r + (c010.
g - c000.
g) * d.
g +
265 (c000.
g - c010.
g - c001.
g + c011.
g) * d.
b * d.
g +
266 (c001.
g - c011.
g - c101.
g + c111.
g) * d.
r * d.
g;
267 c.b = c000.
b + (c001.
b - c000.
b) * d.
b + (c101.
b - c001.
b) * d.
r + (c010.
b - c000.
b) * d.
g +
268 (c000.
b - c010.
b - c001.
b + c011.
b) * d.
b * d.
g +
269 (c001.
b - c011.
b - c101.
b + c111.
b) * d.
r * d.
g;
271 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
272 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
274 c.r = c000.
r + (c101.
r - c100.
r) * d.
b + (c100.
r - c000.
r) * d.
r + (c010.
r - c000.
r) * d.
g +
275 (c100.
r - c110.
r - c101.
r + c111.
r) * d.
b * d.
g +
276 (c000.
r - c010.
r - c100.
r + c110.
r) * d.
r * d.
g;
277 c.g = c000.
g + (c101.
g - c100.
g) * d.
b + (c100.
g - c000.
g) * d.
r + (c010.
g - c000.
g) * d.
g +
278 (c100.
g - c110.
g - c101.
g + c111.
g) * d.
b * d.
g +
279 (c000.
g - c010.
g - c100.
g + c110.
g) * d.
r * d.
g;
280 c.b = c000.
b + (c101.
b - c100.
b) * d.
b + (c100.
b - c000.
b) * d.
r + (c010.
b - c000.
b) * d.
g +
281 (c100.
b - c110.
b - c101.
b + c111.
b) * d.
b * d.
g +
282 (c000.
b - c010.
b - c100.
b + c110.
b) * d.
r * d.
g;
295 const int lutsize2 = lut3d->lutsize2;
296 const int lutsize = lut3d->lutsize;
299 const struct rgbvec d = {
s->r - prev[0],
s->g - prev[1],
s->b - prev[2]};
300 const struct rgbvec c000 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + prev[2]];
301 const struct rgbvec c111 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + next[2]];
305 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
306 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
307 c.r = (1-d.
r) * c000.
r + (d.
r-d.
g) * c100.
r + (d.
g-d.
b) * c110.
r + (d.
b) * c111.
r;
308 c.g = (1-d.
r) * c000.
g + (d.
r-d.
g) * c100.
g + (d.
g-d.
b) * c110.
g + (d.
b) * c111.
g;
309 c.b = (1-d.
r) * c000.
b + (d.
r-d.
g) * c100.
b + (d.
g-d.
b) * c110.
b + (d.
b) * c111.
b;
310 }
else if (d.
r > d.
b) {
311 const struct rgbvec c100 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + prev[2]];
312 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
313 c.r = (1-d.
r) * c000.
r + (d.
r-d.
b) * c100.
r + (d.
b-d.
g) * c101.
r + (d.
g) * c111.
r;
314 c.g = (1-d.
r) * c000.
g + (d.
r-d.
b) * c100.
g + (d.
b-d.
g) * c101.
g + (d.
g) * c111.
g;
315 c.b = (1-d.
r) * c000.
b + (d.
r-d.
b) * c100.
b + (d.
b-d.
g) * c101.
b + (d.
g) * c111.
b;
317 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
318 const struct rgbvec c101 = lut3d->lut[next[0] * lutsize2 + prev[1] * lutsize + next[2]];
319 c.r = (1-d.
b) * c000.
r + (d.
b-d.
r) * c001.
r + (d.
r-d.
g) * c101.
r + (d.
g) * c111.
r;
320 c.g = (1-d.
b) * c000.
g + (d.
b-d.
r) * c001.
g + (d.
r-d.
g) * c101.
g + (d.
g) * c111.
g;
321 c.b = (1-d.
b) * c000.
b + (d.
b-d.
r) * c001.
b + (d.
r-d.
g) * c101.
b + (d.
g) * c111.
b;
325 const struct rgbvec c001 = lut3d->lut[prev[0] * lutsize2 + prev[1] * lutsize + next[2]];
326 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
327 c.r = (1-d.
b) * c000.
r + (d.
b-d.
g) * c001.
r + (d.
g-d.
r) * c011.
r + (d.
r) * c111.
r;
328 c.g = (1-d.
b) * c000.
g + (d.
b-d.
g) * c001.
g + (d.
g-d.
r) * c011.
g + (d.
r) * c111.
g;
329 c.b = (1-d.
b) * c000.
b + (d.
b-d.
g) * c001.
b + (d.
g-d.
r) * c011.
b + (d.
r) * c111.
b;
330 }
else if (d.
b > d.
r) {
331 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
332 const struct rgbvec c011 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + next[2]];
333 c.r = (1-d.
g) * c000.
r + (d.
g-d.
b) * c010.
r + (d.
b-d.
r) * c011.
r + (d.
r) * c111.
r;
334 c.g = (1-d.
g) * c000.
g + (d.
g-d.
b) * c010.
g + (d.
b-d.
r) * c011.
g + (d.
r) * c111.
g;
335 c.b = (1-d.
g) * c000.
b + (d.
g-d.
b) * c010.
b + (d.
b-d.
r) * c011.
b + (d.
r) * c111.
b;
337 const struct rgbvec c010 = lut3d->lut[prev[0] * lutsize2 + next[1] * lutsize + prev[2]];
338 const struct rgbvec c110 = lut3d->lut[next[0] * lutsize2 + next[1] * lutsize + prev[2]];
339 c.r = (1-d.
g) * c000.
r + (d.
g-d.
r) * c010.
r + (d.
r-d.
b) * c110.
r + (d.
b) * c111.
r;
340 c.g = (1-d.
g) * c000.
g + (d.
g-d.
r) * c010.
g + (d.
r-d.
b) * c110.
g + (d.
b) * c111.
g;
341 c.b = (1-d.
g) * c000.
b + (d.
g-d.
r) * c010.
b + (d.
r-d.
b) * c110.
b + (d.
b) * c111.
b;
348 int idx,
const float s)
350 const int lut_max = prelut->
size - 1;
351 const float scaled = (
s - prelut->
min[idx]) * prelut->
scale[idx];
352 const float x =
av_clipf(scaled, 0.0f, lut_max);
353 const int prev =
PREV(x);
354 const int next =
FFMIN((
int)(x) + 1, lut_max);
355 const float p = prelut->
lut[idx][prev];
356 const float n = prelut->
lut[idx][next];
357 const float d = x - (float)prev;
358 return lerpf(p, n, d);
366 if (prelut->size <= 0)
375 #define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth) \
376 static int interp_##nbits##_##name##_p##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
379 const LUT3DContext *lut3d = ctx->priv; \
380 const Lut3DPreLut *prelut = &lut3d->prelut; \
381 const ThreadData *td = arg; \
382 const AVFrame *in = td->in; \
383 const AVFrame *out = td->out; \
384 const int direct = out == in; \
385 const int slice_start = (in->height * jobnr ) / nb_jobs; \
386 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
387 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
388 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
389 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
390 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
391 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
392 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
393 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
394 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
395 const float lut_max = lut3d->lutsize - 1; \
396 const float scale_f = 1.0f / ((1<<depth) - 1); \
397 const float scale_r = lut3d->scale.r * lut_max; \
398 const float scale_g = lut3d->scale.g * lut_max; \
399 const float scale_b = lut3d->scale.b * lut_max; \
401 for (y = slice_start; y < slice_end; y++) { \
402 uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
403 uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
404 uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
405 uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
406 const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
407 const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
408 const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
409 const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
410 for (x = 0; x < in->width; x++) { \
411 const struct rgbvec rgb = {srcr[x] * scale_f, \
413 srcb[x] * scale_f}; \
414 const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
415 const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
416 av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
417 av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
418 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
419 dstr[x] = av_clip_uintp2(vec.r * (float)((1<<depth) - 1), depth); \
420 dstg[x] = av_clip_uintp2(vec.g * (float)((1<<depth) - 1), depth); \
421 dstb[x] = av_clip_uintp2(vec.b * (float)((1<<depth) - 1), depth); \
422 if (!direct && in->linesize[3]) \
425 grow += out->linesize[0]; \
426 brow += out->linesize[1]; \
427 rrow += out->linesize[2]; \
428 arow += out->linesize[3]; \
429 srcgrow += in->linesize[0]; \
430 srcbrow += in->linesize[1]; \
431 srcrrow += in->linesize[2]; \
432 srcarow += in->linesize[3]; \
473 #define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth) \
474 static int interp_##name##_pf##depth(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
477 const LUT3DContext *lut3d = ctx->priv; \
478 const Lut3DPreLut *prelut = &lut3d->prelut; \
479 const ThreadData *td = arg; \
480 const AVFrame *in = td->in; \
481 const AVFrame *out = td->out; \
482 const int direct = out == in; \
483 const int slice_start = (in->height * jobnr ) / nb_jobs; \
484 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
485 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
486 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
487 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
488 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
489 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
490 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
491 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
492 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
493 const float lut_max = lut3d->lutsize - 1; \
494 const float scale_r = lut3d->scale.r * lut_max; \
495 const float scale_g = lut3d->scale.g * lut_max; \
496 const float scale_b = lut3d->scale.b * lut_max; \
498 for (y = slice_start; y < slice_end; y++) { \
499 float *dstg = (float *)grow; \
500 float *dstb = (float *)brow; \
501 float *dstr = (float *)rrow; \
502 float *dsta = (float *)arow; \
503 const float *srcg = (const float *)srcgrow; \
504 const float *srcb = (const float *)srcbrow; \
505 const float *srcr = (const float *)srcrrow; \
506 const float *srca = (const float *)srcarow; \
507 for (x = 0; x < in->width; x++) { \
508 const struct rgbvec rgb = {sanitizef(srcr[x]), \
509 sanitizef(srcg[x]), \
510 sanitizef(srcb[x])}; \
511 const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
512 const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
513 av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
514 av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
515 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
519 if (!direct && in->linesize[3]) \
522 grow += out->linesize[0]; \
523 brow += out->linesize[1]; \
524 rrow += out->linesize[2]; \
525 arow += out->linesize[3]; \
526 srcgrow += in->linesize[0]; \
527 srcbrow += in->linesize[1]; \
528 srcrrow += in->linesize[2]; \
529 srcarow += in->linesize[3]; \
540 #define DEFINE_INTERP_FUNC(name, nbits) \
541 static int interp_##nbits##_##name(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) \
544 const LUT3DContext *lut3d = ctx->priv; \
545 const Lut3DPreLut *prelut = &lut3d->prelut; \
546 const ThreadData *td = arg; \
547 const AVFrame *in = td->in; \
548 const AVFrame *out = td->out; \
549 const int direct = out == in; \
550 const int step = lut3d->step; \
551 const uint8_t r = lut3d->rgba_map[R]; \
552 const uint8_t g = lut3d->rgba_map[G]; \
553 const uint8_t b = lut3d->rgba_map[B]; \
554 const uint8_t a = lut3d->rgba_map[A]; \
555 const int slice_start = (in->height * jobnr ) / nb_jobs; \
556 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
557 uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
558 const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
559 const float lut_max = lut3d->lutsize - 1; \
560 const float scale_f = 1.0f / ((1<<nbits) - 1); \
561 const float scale_r = lut3d->scale.r * lut_max; \
562 const float scale_g = lut3d->scale.g * lut_max; \
563 const float scale_b = lut3d->scale.b * lut_max; \
565 for (y = slice_start; y < slice_end; y++) { \
566 uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
567 const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
568 for (x = 0; x < in->width * step; x += step) { \
569 const struct rgbvec rgb = {src[x + r] * scale_f, \
570 src[x + g] * scale_f, \
571 src[x + b] * scale_f}; \
572 const struct rgbvec prelut_rgb = apply_prelut(prelut, &rgb); \
573 const struct rgbvec scaled_rgb = {av_clipf(prelut_rgb.r * scale_r, 0, lut_max), \
574 av_clipf(prelut_rgb.g * scale_g, 0, lut_max), \
575 av_clipf(prelut_rgb.b * scale_b, 0, lut_max)}; \
576 struct rgbvec vec = interp_##name(lut3d, &scaled_rgb); \
577 dst[x + r] = av_clip_uint##nbits(vec.r * (float)((1<<nbits) - 1)); \
578 dst[x + g] = av_clip_uint##nbits(vec.g * (float)((1<<nbits) - 1)); \
579 dst[x + b] = av_clip_uint##nbits(vec.b * (float)((1<<nbits) - 1)); \
580 if (!direct && step == 4) \
581 dst[x + a] = src[x + a]; \
583 dstrow += out->linesize[0]; \
584 srcrow += in ->linesize[0]; \
601 #define MAX_LINE_SIZE 512
607 return !*p || *p ==
'#';
618 while ((
c = fgetc(
f)) != EOF) {
629 if ((
c = fgetc(
f)) == EOF)
644 #define NEXT_LINE(loop_cond) do { \
645 if (!fgets(line, sizeof(line), f)) { \
646 av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
647 return AVERROR_INVALIDDATA; \
651 #define NEXT_LINE_OR_GOTO(loop_cond, label) do { \
652 if (!fgets(line, sizeof(line), f)) { \
653 av_log(ctx, AV_LOG_ERROR, "Unexpected EOF\n"); \
654 ret = AVERROR_INVALIDDATA; \
663 if (lutsize < 2 || lutsize >
MAX_LEVEL) {
675 for (
i = 0;
i < 3;
i++) {
683 for (
i = 0;
i < 3;
i++) {
688 lut3d->
lutsize2 = lutsize * lutsize;
698 int ret,
i, j, k,
size, size2;
704 if (!strncmp(
line,
"3DLUTSIZE ", 10)) {
714 for (k = 0; k <
size; k++) {
715 for (j = 0; j <
size; j++) {
718 if (k != 0 || j != 0 ||
i != 0)
733 float min[3] = {0.0, 0.0, 0.0};
734 float max[3] = {1.0, 1.0, 1.0};
737 if (!strncmp(
line,
"LUT_3D_SIZE", 11)) {
746 for (k = 0; k <
size; k++) {
747 for (j = 0; j <
size; j++) {
754 if (!strncmp(
line,
"DOMAIN_", 7)) {
756 if (!strncmp(
line + 7,
"MIN ", 4)) vals =
min;
757 else if (!strncmp(
line + 7,
"MAX ", 4)) vals =
max;
764 }
else if (!strncmp(
line,
"TITLE", 5)) {
792 const int size2 = 17 * 17;
793 const float scale = 16*16*16;
802 for (k = 0; k <
size; k++) {
803 for (j = 0; j <
size; j++) {
825 int ret,
i, j, k,
size, size2,
in = -1,
out = -1;
827 uint8_t rgb_map[3] = {0, 1, 2};
832 else if (!strncmp(
line,
"values", 6)) {
833 const char *p =
line + 6;
834 #define SET_COLOR(id) do { \
835 while (av_isspace(*p)) \
838 case 'r': rgb_map[id] = 0; break; \
839 case 'g': rgb_map[id] = 1; break; \
840 case 'b': rgb_map[id] = 2; break; \
842 while (*p && !av_isspace(*p)) \
852 if (
in == -1 ||
out == -1) {
856 if (
in < 2 ||
out < 2 ||
870 scale = 1. / (
out - 1);
872 for (k = 0; k <
size; k++) {
873 for (j = 0; j <
size; j++) {
881 vec->
r =
val[rgb_map[0]] * scale;
882 vec->
g =
val[rgb_map[1]] * scale;
883 vec->
b =
val[rgb_map[2]] * scale;
907 mid = (low + hi) / 2;
918 #define NEXT_FLOAT_OR_GOTO(value, label) \
919 if (!fget_next_word(line, sizeof(line) ,f)) { \
920 ret = AVERROR_INVALIDDATA; \
923 if (av_sscanf(line, "%f", &value) != 1) { \
924 ret = AVERROR_INVALIDDATA; \
932 float in_min[3] = {0.0, 0.0, 0.0};
933 float in_max[3] = {1.0, 1.0, 1.0};
934 float out_min[3] = {0.0, 0.0, 0.0};
935 float out_max[3] = {1.0, 1.0, 1.0};
936 int inside_metadata = 0,
size, size2;
940 int prelut_sizes[3] = {0, 0, 0};
945 if (strncmp(
line,
"CSPLUTV100", 10)) {
952 if (strncmp(
line,
"3D", 2)) {
961 if (!strncmp(
line,
"BEGIN METADATA", 14)) {
965 if (!strncmp(
line,
"END METADATA", 12)) {
969 if (inside_metadata == 0) {
970 int size_r, size_g, size_b;
972 for (
int i = 0;
i < 3;
i++) {
973 int npoints = strtol(
line,
NULL, 0);
984 if (in_prelut[
i] || out_prelut[
i]) {
990 in_prelut[
i] = (
float*)
av_malloc(npoints *
sizeof(
float));
991 out_prelut[
i] = (
float*)
av_malloc(npoints *
sizeof(
float));
992 if (!in_prelut[
i] || !out_prelut[
i]) {
997 prelut_sizes[
i] = npoints;
999 in_max[
i] = -FLT_MAX;
1000 out_min[
i] = FLT_MAX;
1001 out_max[
i] = -FLT_MAX;
1003 for (
int j = 0; j < npoints; j++) {
1005 in_min[
i] =
FFMIN(in_min[
i], v);
1006 in_max[
i] =
FFMAX(in_max[
i], v);
1007 in_prelut[
i][j] = v;
1008 if (j > 0 && v < last) {
1016 for (
int j = 0; j < npoints; j++) {
1018 out_min[
i] =
FFMIN(out_min[
i], v);
1019 out_max[
i] =
FFMAX(out_max[
i], v);
1020 out_prelut[
i][j] = v;
1023 }
else if (npoints == 2) {
1044 if (
av_sscanf(
line,
"%d %d %d", &size_r, &size_g, &size_b) != 3) {
1048 if (size_r != size_g || size_r != size_b) {
1057 if (prelut_sizes[0] && prelut_sizes[1] && prelut_sizes[2])
1064 for (
int k = 0; k <
size; k++) {
1065 for (
int j = 0; j <
size; j++) {
1066 for (
int i = 0;
i <
size;
i++) {
1075 vec->
r *= out_max[0] - out_min[0];
1076 vec->
g *= out_max[1] - out_min[1];
1077 vec->
b *= out_max[2] - out_min[2];
1087 for (
int c = 0;
c < 3;
c++) {
1100 a = out_prelut[
c][idx + 0];
1101 b = out_prelut[
c][idx + 1];
1102 mix = x - in_prelut[
c][idx];
1112 lut3d->
scale.
r =
av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
1113 lut3d->
scale.
g =
av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
1114 lut3d->
scale.
b =
av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
1118 for (
int c = 0;
c < 3;
c++) {
1130 const float c = 1. / (
size - 1);
1136 for (k = 0; k <
size; k++) {
1137 for (j = 0; j <
size; j++) {
1177 int depth, is16bit, isfloat,
planar;
1181 depth =
desc->comp[0].depth;
1182 is16bit =
desc->comp[0].depth > 8;
1188 #define SET_FUNC(name) do { \
1189 if (planar && !isfloat) { \
1191 case 8: lut3d->interp = interp_8_##name##_p8; break; \
1192 case 9: lut3d->interp = interp_16_##name##_p9; break; \
1193 case 10: lut3d->interp = interp_16_##name##_p10; break; \
1194 case 12: lut3d->interp = interp_16_##name##_p12; break; \
1195 case 14: lut3d->interp = interp_16_##name##_p14; break; \
1196 case 16: lut3d->interp = interp_16_##name##_p16; break; \
1198 } else if (isfloat) { lut3d->interp = interp_##name##_pf32; \
1199 } else if (is16bit) { lut3d->interp = interp_16_##name; \
1200 } else { lut3d->interp = interp_8_##name; } \
1255 char *res,
int res_len,
int flags)
1266 #if CONFIG_LUT3D_FILTER
1267 static const AVOption lut3d_options[] = {
1294 ext = strrchr(lut3d->
file,
'.');
1317 if (!ret && !lut3d->
lutsize) {
1333 for (
i = 0;
i < 3;
i++) {
1365 .priv_class = &lut3d_class,
1371 #if CONFIG_HALDCLUT_FILTER
1377 const int w = lut3d->clut_width;
1378 const int step = lut3d->clut_step;
1379 const uint8_t *rgba_map = lut3d->clut_rgba_map;
1381 const int level2 = lut3d->
lutsize2;
1383 #define LOAD_CLUT(nbits) do { \
1384 int i, j, k, x = 0, y = 0; \
1386 for (k = 0; k < level; k++) { \
1387 for (j = 0; j < level; j++) { \
1388 for (i = 0; i < level; i++) { \
1389 const uint##nbits##_t *src = (const uint##nbits##_t *) \
1390 (data + y*linesize + x*step); \
1391 struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1392 vec->r = src[rgba_map[0]] / (float)((1<<(nbits)) - 1); \
1393 vec->g = src[rgba_map[1]] / (float)((1<<(nbits)) - 1); \
1394 vec->b = src[rgba_map[2]] / (float)((1<<(nbits)) - 1); \
1404 switch (lut3d->clut_bits) {
1405 case 8: LOAD_CLUT(8);
break;
1406 case 16: LOAD_CLUT(16);
break;
1418 const int w = lut3d->clut_width;
1420 const int level2 = lut3d->
lutsize2;
1422 #define LOAD_CLUT_PLANAR(nbits, depth) do { \
1423 int i, j, k, x = 0, y = 0; \
1425 for (k = 0; k < level; k++) { \
1426 for (j = 0; j < level; j++) { \
1427 for (i = 0; i < level; i++) { \
1428 const uint##nbits##_t *gsrc = (const uint##nbits##_t *) \
1429 (datag + y*glinesize); \
1430 const uint##nbits##_t *bsrc = (const uint##nbits##_t *) \
1431 (datab + y*blinesize); \
1432 const uint##nbits##_t *rsrc = (const uint##nbits##_t *) \
1433 (datar + y*rlinesize); \
1434 struct rgbvec *vec = &lut3d->lut[i * level2 + j * level + k]; \
1435 vec->r = gsrc[x] / (float)((1<<(depth)) - 1); \
1436 vec->g = bsrc[x] / (float)((1<<(depth)) - 1); \
1437 vec->b = rsrc[x] / (float)((1<<(depth)) - 1); \
1447 switch (lut3d->clut_bits) {
1448 case 8: LOAD_CLUT_PLANAR(8, 8);
break;
1449 case 9: LOAD_CLUT_PLANAR(16, 9);
break;
1450 case 10: LOAD_CLUT_PLANAR(16, 10);
break;
1451 case 12: LOAD_CLUT_PLANAR(16, 12);
break;
1452 case 14: LOAD_CLUT_PLANAR(16, 14);
break;
1453 case 16: LOAD_CLUT_PLANAR(16, 16);
break;
1465 const int w = lut3d->clut_width;
1467 const int level2 = lut3d->
lutsize2;
1469 int i, j, k, x = 0, y = 0;
1471 for (k = 0; k <
level; k++) {
1472 for (j = 0; j <
level; j++) {
1474 const float *
gsrc = (
const float *)(datag + y*glinesize);
1475 const float *
bsrc = (
const float *)(datab + y*blinesize);
1476 const float *
rsrc = (
const float *)(datar + y*rlinesize);
1499 outlink->
w =
ctx->inputs[0]->w;
1500 outlink->
h =
ctx->inputs[0]->h;
1522 lut3d->clut_bits =
desc->comp[0].depth;
1529 if (inlink->
w > inlink->
h)
1531 "Hald CLUT will be ignored\n", inlink->
w - inlink->
h);
1532 else if (inlink->
w < inlink->
h)
1534 "Hald CLUT will be ignored\n", inlink->
h - inlink->
w);
1535 lut3d->clut_width =
w =
h =
FFMIN(inlink->
w, inlink->
h);
1546 const int max_clut_level = sqrt(
MAX_LEVEL);
1547 const int max_clut_size = max_clut_level*max_clut_level*max_clut_level;
1549 "(maximum level is %d, or %dx%d CLUT)\n",
1550 max_clut_level, max_clut_size, max_clut_size);
1570 if (lut3d->clut_float)
1571 update_clut_float(
ctx->priv, second);
1572 else if (lut3d->clut_planar)
1573 update_clut_planar(
ctx->priv, second);
1575 update_clut_packed(
ctx->priv, second);
1584 lut3d->fs.on_event = update_apply_clut;
1595 static const AVOption haldclut_options[] = {
1609 .config_props = config_clut,
1627 .preinit = haldclut_framesync_preinit,
1628 .
init = haldclut_init,
1629 .
uninit = haldclut_uninit,
1632 .
inputs = haldclut_inputs,
1634 .priv_class = &haldclut_class,
1640 #if CONFIG_LUT1D_FILTER
1642 enum interp_1d_mode {
1643 INTERPOLATE_1D_NEAREST,
1644 INTERPOLATE_1D_LINEAR,
1645 INTERPOLATE_1D_CUBIC,
1646 INTERPOLATE_1D_COSINE,
1647 INTERPOLATE_1D_SPLINE,
1651 #define MAX_1D_LEVEL 65536
1653 typedef struct LUT1DContext {
1660 float lut[3][MAX_1D_LEVEL];
1666 #define OFFSET(x) offsetof(LUT1DContext, x)
1668 static void set_identity_matrix_1d(LUT1DContext *lut1d,
int size)
1670 const float c = 1. / (
size - 1);
1673 lut1d->lutsize =
size;
1675 lut1d->lut[0][
i] =
i *
c;
1676 lut1d->lut[1][
i] =
i *
c;
1677 lut1d->lut[2][
i] =
i *
c;
1683 LUT1DContext *lut1d =
ctx->priv;
1685 float in_min[3] = {0.0, 0.0, 0.0};
1686 float in_max[3] = {1.0, 1.0, 1.0};
1687 float out_min[3] = {0.0, 0.0, 0.0};
1688 float out_max[3] = {1.0, 1.0, 1.0};
1689 int inside_metadata = 0,
size;
1692 if (strncmp(
line,
"CSPLUTV100", 10)) {
1698 if (strncmp(
line,
"1D", 2)) {
1706 if (!strncmp(
line,
"BEGIN METADATA", 14)) {
1707 inside_metadata = 1;
1710 if (!strncmp(
line,
"END METADATA", 12)) {
1711 inside_metadata = 0;
1714 if (inside_metadata == 0) {
1715 for (
int i = 0;
i < 3;
i++) {
1716 int npoints = strtol(
line,
NULL, 0);
1734 if (size < 2 || size > MAX_1D_LEVEL) {
1739 lut1d->lutsize =
size;
1741 for (
int i = 0;
i <
size;
i++) {
1743 if (
av_sscanf(
line,
"%f %f %f", &lut1d->lut[0][
i], &lut1d->lut[1][
i], &lut1d->lut[2][
i]) != 3)
1745 lut1d->lut[0][
i] *= out_max[0] - out_min[0];
1746 lut1d->lut[1][
i] *= out_max[1] - out_min[1];
1747 lut1d->lut[2][
i] *= out_max[2] - out_min[2];
1754 lut1d->scale.r =
av_clipf(1. / (in_max[0] - in_min[0]), 0.f, 1.f);
1755 lut1d->scale.g =
av_clipf(1. / (in_max[1] - in_min[1]), 0.f, 1.f);
1756 lut1d->scale.b =
av_clipf(1. / (in_max[2] - in_min[2]), 0.f, 1.f);
1763 LUT1DContext *lut1d =
ctx->priv;
1765 float min[3] = {0.0, 0.0, 0.0};
1766 float max[3] = {1.0, 1.0, 1.0};
1769 if (!strncmp(
line,
"LUT_1D_SIZE", 11)) {
1773 if (size < 2 || size > MAX_1D_LEVEL) {
1777 lut1d->lutsize =
size;
1782 if (!strncmp(
line,
"DOMAIN_", 7)) {
1784 if (!strncmp(
line + 7,
"MIN ", 4)) vals =
min;
1785 else if (!strncmp(
line + 7,
"MAX ", 4)) vals =
max;
1792 }
else if (!strncmp(
line,
"LUT_1D_INPUT_RANGE ", 19)) {
1797 }
else if (!strncmp(
line,
"TITLE", 5)) {
1801 if (
av_sscanf(
line,
"%f %f %f", &lut1d->lut[0][
i], &lut1d->lut[1][
i], &lut1d->lut[2][
i]) != 3)
1815 static const AVOption lut1d_options[] = {
1818 {
"nearest",
"use values from the nearest defined points", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_NEAREST}, 0, 0,
TFLAGS,
"interp_mode" },
1819 {
"linear",
"use values from the linear interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_LINEAR}, 0, 0,
TFLAGS,
"interp_mode" },
1820 {
"cosine",
"use values from the cosine interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_COSINE}, 0, 0,
TFLAGS,
"interp_mode" },
1821 {
"cubic",
"use values from the cubic interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_CUBIC}, 0, 0,
TFLAGS,
"interp_mode" },
1822 {
"spline",
"use values from the spline interpolation", 0,
AV_OPT_TYPE_CONST, {.i64=INTERPOLATE_1D_SPLINE}, 0, 0,
TFLAGS,
"interp_mode" },
1828 static inline float interp_1d_nearest(
const LUT1DContext *lut1d,
1829 int idx,
const float s)
1831 return lut1d->lut[idx][
NEAR(
s)];
1834 #define NEXT1D(x) (FFMIN((int)(x) + 1, lut1d->lutsize - 1))
1836 static inline float interp_1d_linear(
const LUT1DContext *lut1d,
1837 int idx,
const float s)
1839 const int prev =
PREV(
s);
1840 const int next = NEXT1D(
s);
1841 const float d =
s - prev;
1842 const float p = lut1d->lut[idx][prev];
1843 const float n = lut1d->lut[idx][next];
1845 return lerpf(p, n, d);
1848 static inline float interp_1d_cosine(
const LUT1DContext *lut1d,
1849 int idx,
const float s)
1851 const int prev =
PREV(
s);
1852 const int next = NEXT1D(
s);
1853 const float d =
s - prev;
1854 const float p = lut1d->lut[idx][prev];
1855 const float n = lut1d->lut[idx][next];
1856 const float m = (1.f -
cosf(d *
M_PI)) * .5f;
1858 return lerpf(p, n, m);
1861 static inline float interp_1d_cubic(
const LUT1DContext *lut1d,
1862 int idx,
const float s)
1864 const int prev =
PREV(
s);
1865 const int next = NEXT1D(
s);
1866 const float mu =
s - prev;
1869 float y0 = lut1d->lut[idx][
FFMAX(prev - 1, 0)];
1870 float y1 = lut1d->lut[idx][prev];
1871 float y2 = lut1d->lut[idx][next];
1872 float y3 = lut1d->lut[idx][
FFMIN(next + 1, lut1d->lutsize - 1)];
1876 a0 = y3 - y2 - y0 + y1;
1881 return a0 * mu * mu2 +
a1 * mu2 +
a2 * mu +
a3;
1884 static inline float interp_1d_spline(
const LUT1DContext *lut1d,
1885 int idx,
const float s)
1887 const int prev =
PREV(
s);
1888 const int next = NEXT1D(
s);
1889 const float x =
s - prev;
1890 float c0,
c1,
c2, c3;
1892 float y0 = lut1d->lut[idx][
FFMAX(prev - 1, 0)];
1893 float y1 = lut1d->lut[idx][prev];
1894 float y2 = lut1d->lut[idx][next];
1895 float y3 = lut1d->lut[idx][
FFMIN(next + 1, lut1d->lutsize - 1)];
1898 c1 = .5f * (y2 - y0);
1899 c2 = y0 - 2.5f * y1 + 2.f * y2 - .5f * y3;
1900 c3 = .5f * (y3 - y0) + 1.5f * (y1 - y2);
1902 return ((c3 * x +
c2) * x +
c1) * x + c0;
1905 #define DEFINE_INTERP_FUNC_PLANAR_1D(name, nbits, depth) \
1906 static int interp_1d_##nbits##_##name##_p##depth(AVFilterContext *ctx, \
1907 void *arg, int jobnr, \
1911 const LUT1DContext *lut1d = ctx->priv; \
1912 const ThreadData *td = arg; \
1913 const AVFrame *in = td->in; \
1914 const AVFrame *out = td->out; \
1915 const int direct = out == in; \
1916 const int slice_start = (in->height * jobnr ) / nb_jobs; \
1917 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
1918 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
1919 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
1920 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
1921 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
1922 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
1923 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
1924 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
1925 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
1926 const float factor = (1 << depth) - 1; \
1927 const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
1928 const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
1929 const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
1931 for (y = slice_start; y < slice_end; y++) { \
1932 uint##nbits##_t *dstg = (uint##nbits##_t *)grow; \
1933 uint##nbits##_t *dstb = (uint##nbits##_t *)brow; \
1934 uint##nbits##_t *dstr = (uint##nbits##_t *)rrow; \
1935 uint##nbits##_t *dsta = (uint##nbits##_t *)arow; \
1936 const uint##nbits##_t *srcg = (const uint##nbits##_t *)srcgrow; \
1937 const uint##nbits##_t *srcb = (const uint##nbits##_t *)srcbrow; \
1938 const uint##nbits##_t *srcr = (const uint##nbits##_t *)srcrrow; \
1939 const uint##nbits##_t *srca = (const uint##nbits##_t *)srcarow; \
1940 for (x = 0; x < in->width; x++) { \
1941 float r = srcr[x] * scale_r; \
1942 float g = srcg[x] * scale_g; \
1943 float b = srcb[x] * scale_b; \
1944 r = interp_1d_##name(lut1d, 0, r); \
1945 g = interp_1d_##name(lut1d, 1, g); \
1946 b = interp_1d_##name(lut1d, 2, b); \
1947 dstr[x] = av_clip_uintp2(r * factor, depth); \
1948 dstg[x] = av_clip_uintp2(g * factor, depth); \
1949 dstb[x] = av_clip_uintp2(b * factor, depth); \
1950 if (!direct && in->linesize[3]) \
1951 dsta[x] = srca[x]; \
1953 grow += out->linesize[0]; \
1954 brow += out->linesize[1]; \
1955 rrow += out->linesize[2]; \
1956 arow += out->linesize[3]; \
1957 srcgrow += in->linesize[0]; \
1958 srcbrow += in->linesize[1]; \
1959 srcrrow += in->linesize[2]; \
1960 srcarow += in->linesize[3]; \
1965 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 8, 8)
1966 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 8, 8)
1967 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 8, 8)
1968 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 8, 8)
1969 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 8, 8)
1971 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 9)
1972 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 9)
1973 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 9)
1974 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 9)
1975 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 9)
1977 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 10)
1978 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 10)
1979 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 10)
1980 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 10)
1981 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 10)
1983 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 12)
1984 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 12)
1985 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 12)
1986 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 12)
1987 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 12)
1989 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 14)
1990 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 14)
1991 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 14)
1992 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 14)
1993 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 14)
1995 DEFINE_INTERP_FUNC_PLANAR_1D(nearest, 16, 16)
1996 DEFINE_INTERP_FUNC_PLANAR_1D(
linear, 16, 16)
1997 DEFINE_INTERP_FUNC_PLANAR_1D(cosine, 16, 16)
1998 DEFINE_INTERP_FUNC_PLANAR_1D(cubic, 16, 16)
1999 DEFINE_INTERP_FUNC_PLANAR_1D(spline, 16, 16)
2001 #define DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(name, depth) \
2002 static int interp_1d_##name##_pf##depth(AVFilterContext *ctx, \
2003 void *arg, int jobnr, \
2007 const LUT1DContext *lut1d = ctx->priv; \
2008 const ThreadData *td = arg; \
2009 const AVFrame *in = td->in; \
2010 const AVFrame *out = td->out; \
2011 const int direct = out == in; \
2012 const int slice_start = (in->height * jobnr ) / nb_jobs; \
2013 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
2014 uint8_t *grow = out->data[0] + slice_start * out->linesize[0]; \
2015 uint8_t *brow = out->data[1] + slice_start * out->linesize[1]; \
2016 uint8_t *rrow = out->data[2] + slice_start * out->linesize[2]; \
2017 uint8_t *arow = out->data[3] + slice_start * out->linesize[3]; \
2018 const uint8_t *srcgrow = in->data[0] + slice_start * in->linesize[0]; \
2019 const uint8_t *srcbrow = in->data[1] + slice_start * in->linesize[1]; \
2020 const uint8_t *srcrrow = in->data[2] + slice_start * in->linesize[2]; \
2021 const uint8_t *srcarow = in->data[3] + slice_start * in->linesize[3]; \
2022 const float lutsize = lut1d->lutsize - 1; \
2023 const float scale_r = lut1d->scale.r * lutsize; \
2024 const float scale_g = lut1d->scale.g * lutsize; \
2025 const float scale_b = lut1d->scale.b * lutsize; \
2027 for (y = slice_start; y < slice_end; y++) { \
2028 float *dstg = (float *)grow; \
2029 float *dstb = (float *)brow; \
2030 float *dstr = (float *)rrow; \
2031 float *dsta = (float *)arow; \
2032 const float *srcg = (const float *)srcgrow; \
2033 const float *srcb = (const float *)srcbrow; \
2034 const float *srcr = (const float *)srcrrow; \
2035 const float *srca = (const float *)srcarow; \
2036 for (x = 0; x < in->width; x++) { \
2037 float r = av_clipf(sanitizef(srcr[x]) * scale_r, 0.0f, lutsize); \
2038 float g = av_clipf(sanitizef(srcg[x]) * scale_g, 0.0f, lutsize); \
2039 float b = av_clipf(sanitizef(srcb[x]) * scale_b, 0.0f, lutsize); \
2040 r = interp_1d_##name(lut1d, 0, r); \
2041 g = interp_1d_##name(lut1d, 1, g); \
2042 b = interp_1d_##name(lut1d, 2, b); \
2046 if (!direct && in->linesize[3]) \
2047 dsta[x] = srca[x]; \
2049 grow += out->linesize[0]; \
2050 brow += out->linesize[1]; \
2051 rrow += out->linesize[2]; \
2052 arow += out->linesize[3]; \
2053 srcgrow += in->linesize[0]; \
2054 srcbrow += in->linesize[1]; \
2055 srcrrow += in->linesize[2]; \
2056 srcarow += in->linesize[3]; \
2061 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(nearest, 32)
2062 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(
linear, 32)
2063 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cosine, 32)
2064 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(cubic, 32)
2065 DEFINE_INTERP_FUNC_PLANAR_1D_FLOAT(spline, 32)
2067 #define DEFINE_INTERP_FUNC_1D(name, nbits) \
2068 static int interp_1d_##nbits##_##name(AVFilterContext *ctx, void *arg, \
2069 int jobnr, int nb_jobs) \
2072 const LUT1DContext *lut1d = ctx->priv; \
2073 const ThreadData *td = arg; \
2074 const AVFrame *in = td->in; \
2075 const AVFrame *out = td->out; \
2076 const int direct = out == in; \
2077 const int step = lut1d->step; \
2078 const uint8_t r = lut1d->rgba_map[R]; \
2079 const uint8_t g = lut1d->rgba_map[G]; \
2080 const uint8_t b = lut1d->rgba_map[B]; \
2081 const uint8_t a = lut1d->rgba_map[A]; \
2082 const int slice_start = (in->height * jobnr ) / nb_jobs; \
2083 const int slice_end = (in->height * (jobnr+1)) / nb_jobs; \
2084 uint8_t *dstrow = out->data[0] + slice_start * out->linesize[0]; \
2085 const uint8_t *srcrow = in ->data[0] + slice_start * in ->linesize[0]; \
2086 const float factor = (1 << nbits) - 1; \
2087 const float scale_r = (lut1d->scale.r / factor) * (lut1d->lutsize - 1); \
2088 const float scale_g = (lut1d->scale.g / factor) * (lut1d->lutsize - 1); \
2089 const float scale_b = (lut1d->scale.b / factor) * (lut1d->lutsize - 1); \
2091 for (y = slice_start; y < slice_end; y++) { \
2092 uint##nbits##_t *dst = (uint##nbits##_t *)dstrow; \
2093 const uint##nbits##_t *src = (const uint##nbits##_t *)srcrow; \
2094 for (x = 0; x < in->width * step; x += step) { \
2095 float rr = src[x + r] * scale_r; \
2096 float gg = src[x + g] * scale_g; \
2097 float bb = src[x + b] * scale_b; \
2098 rr = interp_1d_##name(lut1d, 0, rr); \
2099 gg = interp_1d_##name(lut1d, 1, gg); \
2100 bb = interp_1d_##name(lut1d, 2, bb); \
2101 dst[x + r] = av_clip_uint##nbits(rr * factor); \
2102 dst[x + g] = av_clip_uint##nbits(gg * factor); \
2103 dst[x + b] = av_clip_uint##nbits(bb * factor); \
2104 if (!direct && step == 4) \
2105 dst[x + a] = src[x + a]; \
2107 dstrow += out->linesize[0]; \
2108 srcrow += in ->linesize[0]; \
2113 DEFINE_INTERP_FUNC_1D(nearest, 8)
2114 DEFINE_INTERP_FUNC_1D(
linear, 8)
2115 DEFINE_INTERP_FUNC_1D(cosine, 8)
2116 DEFINE_INTERP_FUNC_1D(cubic, 8)
2117 DEFINE_INTERP_FUNC_1D(spline, 8)
2119 DEFINE_INTERP_FUNC_1D(nearest, 16)
2120 DEFINE_INTERP_FUNC_1D(
linear, 16)
2121 DEFINE_INTERP_FUNC_1D(cosine, 16)
2122 DEFINE_INTERP_FUNC_1D(cubic, 16)
2123 DEFINE_INTERP_FUNC_1D(spline, 16)
2127 int depth, is16bit, isfloat,
planar;
2128 LUT1DContext *lut1d = inlink->dst->priv;
2131 depth =
desc->comp[0].depth;
2132 is16bit =
desc->comp[0].depth > 8;
2138 #define SET_FUNC_1D(name) do { \
2139 if (planar && !isfloat) { \
2141 case 8: lut1d->interp = interp_1d_8_##name##_p8; break; \
2142 case 9: lut1d->interp = interp_1d_16_##name##_p9; break; \
2143 case 10: lut1d->interp = interp_1d_16_##name##_p10; break; \
2144 case 12: lut1d->interp = interp_1d_16_##name##_p12; break; \
2145 case 14: lut1d->interp = interp_1d_16_##name##_p14; break; \
2146 case 16: lut1d->interp = interp_1d_16_##name##_p16; break; \
2148 } else if (isfloat) { lut1d->interp = interp_1d_##name##_pf32; \
2149 } else if (is16bit) { lut1d->interp = interp_1d_16_##name; \
2150 } else { lut1d->interp = interp_1d_8_##name; } \
2153 switch (lut1d->interpolation) {
2154 case INTERPOLATE_1D_NEAREST: SET_FUNC_1D(nearest);
break;
2155 case INTERPOLATE_1D_LINEAR: SET_FUNC_1D(
linear);
break;
2156 case INTERPOLATE_1D_COSINE: SET_FUNC_1D(cosine);
break;
2157 case INTERPOLATE_1D_CUBIC: SET_FUNC_1D(cubic);
break;
2158 case INTERPOLATE_1D_SPLINE: SET_FUNC_1D(spline);
break;
2171 LUT1DContext *lut1d =
ctx->priv;
2173 lut1d->scale.r = lut1d->scale.g = lut1d->scale.b = 1.f;
2176 set_identity_matrix_1d(lut1d, 32);
2187 ext = strrchr(lut1d->file,
'.');
2196 ret = parse_cube_1d(
ctx,
f);
2198 ret = parse_cinespace_1d(
ctx,
f);
2204 if (!ret && !lut1d->lutsize) {
2217 LUT1DContext *lut1d =
ctx->priv;
2252 static int lut1d_process_command(
AVFilterContext *
ctx,
const char *cmd,
const char *args,
2253 char *res,
int res_len,
int flags)
2255 LUT1DContext *lut1d =
ctx->priv;
2262 ret = lut1d_init(
ctx);
2264 set_identity_matrix_1d(lut1d, 32);
2267 return config_input_1d(
ctx->inputs[0]);
2274 .filter_frame = filter_frame_1d,
2275 .config_props = config_input_1d,
2291 .priv_size =
sizeof(LUT1DContext),
2296 .priv_class = &lut1d_class,
static double val(void *priv, double ch)
static const AVFilterPad inputs[]
static const AVFilterPad outputs[]
static int activate(AVFilterContext *ctx)
static int interpolation(DeclickChannel *c, const double *src, int ar_order, double *acoefficients, int *index, int nb_errors, double *auxiliary, double *interpolated)
static int config_output(AVFilterLink *outlink)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
uint8_t pi<< 24) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_U8,(uint64_t)((*(const uint8_t *) pi - 0x80U))<< 56) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16,(*(const int16_t *) pi >>8)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1<< 16)) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S16,(uint64_t)(*(const int16_t *) pi)<< 48) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32,(*(const int32_t *) pi >>24)+0x80) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_S32,(uint64_t)(*(const int32_t *) pi)<< 32) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S64,(*(const int64_t *) pi >>56)+0x80) CONV_FUNC(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0f/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S64, *(const int64_t *) pi *(1.0/(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_FLT, llrintf(*(const float *) pi *(UINT64_C(1)<< 63))) CONV_FUNC(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) CONV_FUNC(AV_SAMPLE_FMT_S64, int64_t, AV_SAMPLE_FMT_DBL, llrint(*(const double *) pi *(UINT64_C(1)<< 63))) #define FMT_PAIR_FUNC(out, in) static conv_func_type *const fmt_pair_to_conv_functions[AV_SAMPLE_FMT_NB *AV_SAMPLE_FMT_NB]={ FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_U8), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S16), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S32), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_FLT), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_DBL), FMT_PAIR_FUNC(AV_SAMPLE_FMT_U8, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S16, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S32, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_FLT, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_S64), FMT_PAIR_FUNC(AV_SAMPLE_FMT_S64, AV_SAMPLE_FMT_S64), };static void cpy1(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, len);} static void cpy2(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 2 *len);} static void cpy4(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 4 *len);} static void cpy8(uint8_t **dst, const uint8_t **src, int len){ memcpy(*dst, *src, 8 *len);} AudioConvert *swri_audio_convert_alloc(enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, const int *ch_map, int flags) { AudioConvert *ctx;conv_func_type *f=fmt_pair_to_conv_functions[av_get_packed_sample_fmt(out_fmt)+AV_SAMPLE_FMT_NB *av_get_packed_sample_fmt(in_fmt)];if(!f) return NULL;ctx=av_mallocz(sizeof(*ctx));if(!ctx) return NULL;if(channels==1){ in_fmt=av_get_planar_sample_fmt(in_fmt);out_fmt=av_get_planar_sample_fmt(out_fmt);} ctx->channels=channels;ctx->conv_f=f;ctx->ch_map=ch_map;if(in_fmt==AV_SAMPLE_FMT_U8||in_fmt==AV_SAMPLE_FMT_U8P) memset(ctx->silence, 0x80, sizeof(ctx->silence));if(out_fmt==in_fmt &&!ch_map) { switch(av_get_bytes_per_sample(in_fmt)){ case 1:ctx->simd_f=cpy1;break;case 2:ctx->simd_f=cpy2;break;case 4:ctx->simd_f=cpy4;break;case 8:ctx->simd_f=cpy8;break;} } if(HAVE_X86ASM &&HAVE_MMX) swri_audio_convert_init_x86(ctx, out_fmt, in_fmt, channels);if(ARCH_ARM) swri_audio_convert_init_arm(ctx, out_fmt, in_fmt, channels);if(ARCH_AARCH64) swri_audio_convert_init_aarch64(ctx, out_fmt, in_fmt, channels);return ctx;} void swri_audio_convert_free(AudioConvert **ctx) { av_freep(ctx);} int swri_audio_convert(AudioConvert *ctx, AudioData *out, AudioData *in, int len) { int ch;int off=0;const int os=(out->planar ? 1 :out->ch_count) *out->bps;unsigned misaligned=0;av_assert0(ctx->channels==out->ch_count);if(ctx->in_simd_align_mask) { int planes=in->planar ? in->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) in->ch[ch];misaligned|=m &ctx->in_simd_align_mask;} if(ctx->out_simd_align_mask) { int planes=out->planar ? out->ch_count :1;unsigned m=0;for(ch=0;ch< planes;ch++) m|=(intptr_t) out->ch[ch];misaligned|=m &ctx->out_simd_align_mask;} if(ctx->simd_f &&!ctx->ch_map &&!misaligned){ off=len &~15;av_assert1(off >=0);av_assert1(off<=len);av_assert2(ctx->channels==SWR_CH_MAX||!in->ch[ctx->channels]);if(off >0){ if(out->planar==in->planar){ int planes=out->planar ? out->ch_count :1;for(ch=0;ch< planes;ch++){ ctx->simd_f(out->ch+ch,(const uint8_t **) in->ch+ch, off *(out-> planar
simple assert() macros that are a bit more flexible than ISO C assert().
#define av_assert0(cond)
assert() equivalent, that is always enabled.
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Main libavfilter public API header.
static av_cold int init(AVCodecContext *avctx)
#define flags(name, subs,...)
#define fs(width, name, subs,...)
static av_cold int uninit(AVCodecContext *avctx)
int ff_fill_rgba_map(uint8_t *rgba_map, enum AVPixelFormat pix_fmt)
int ff_framesync_configure(FFFrameSync *fs)
Configure a frame sync structure.
int ff_framesync_dualinput_get(FFFrameSync *fs, AVFrame **f0, AVFrame **f1)
int ff_framesync_activate(FFFrameSync *fs)
Examine the frames in the filter's input and try to produce output.
int ff_framesync_init_dualinput(FFFrameSync *fs, AVFilterContext *parent)
Initialize a frame sync structure for dualinput.
void ff_framesync_uninit(FFFrameSync *fs)
Free all memory currently allocated.
#define FRAMESYNC_DEFINE_CLASS(name, context, field)
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
int() avfilter_action_func(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
A function pointer passed to the AVFilterGraph::execute callback to be executed multiple times,...
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
#define AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL
Same as AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC, except that the filter will have its filter_frame() c...
#define AVERROR_PATCHWELCOME
Not yet implemented in FFmpeg, patches welcome.
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
#define av_err2str(errnum)
Convenience macro, the return value should be used only directly in function arguments but never stan...
int av_frame_is_writable(AVFrame *frame)
Check if the frame data is writable.
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
#define AV_LOG_WARNING
Something somehow does not look correct.
#define AV_LOG_INFO
Standard information.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
FILE * av_fopen_utf8(const char *path, const char *mode)
Open a file using a UTF-8 filename.
int av_strcasecmp(const char *a, const char *b)
Locale-independent case-insensitive compare.
static av_const int av_isspace(int c)
Locale-independent conversion of ASCII isspace.
int av_sscanf(const char *string, const char *format,...)
See libc sscanf manual for more information.
static int linear(InterplayACMContext *s, unsigned ind, unsigned col)
static int mix(int c0, int c1)
#define AVFILTER_DEFINE_CLASS(fname)
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static enum AVPixelFormat pix_fmts[]
int av_pix_fmt_count_planes(enum AVPixelFormat pix_fmt)
int av_get_padded_bits_per_pixel(const AVPixFmtDescriptor *pixdesc)
Return the number of bits per pixel for the pixel format described by pixdesc, including any padding ...
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
#define AV_PIX_FMT_FLAG_FLOAT
The pixel format contains IEEE-754 floating point values.
#define AV_PIX_FMT_FLAG_PLANAR
At least one pixel component is not in the first data plane.
#define AV_PIX_FMT_GBRAP12
#define AV_PIX_FMT_GBRPF32
#define AV_PIX_FMT_GBRAP16
#define AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_RGBA64
#define AV_PIX_FMT_GBRP12
AVPixelFormat
Pixel format.
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
@ AV_PIX_FMT_BGR0
packed BGR 8:8:8, 32bpp, BGRXBGRX... X=unused/undefined
@ AV_PIX_FMT_ARGB
packed ARGB 8:8:8:8, 32bpp, ARGBARGB...
@ AV_PIX_FMT_BGRA
packed BGRA 8:8:8:8, 32bpp, BGRABGRA...
@ AV_PIX_FMT_ABGR
packed ABGR 8:8:8:8, 32bpp, ABGRABGR...
@ AV_PIX_FMT_0BGR
packed BGR 8:8:8, 32bpp, XBGRXBGR... X=unused/undefined
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
@ AV_PIX_FMT_RGB0
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
@ AV_PIX_FMT_BGR24
packed RGB 8:8:8, 24bpp, BGRBGR...
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
@ AV_PIX_FMT_0RGB
packed RGB 8:8:8, 32bpp, XRGBXRGB... X=unused/undefined
#define AV_PIX_FMT_BGRA64
#define AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_GBRP14
#define AV_PIX_FMT_GBRAPF32
Describe the class of an AVClass context structure.
void * priv
private data for use by the filter
AVFilterLink ** outputs
array of pointers to output links
A link between two filters.
int w
agreed upon image width
int h
agreed upon image height
AVFilterContext * src
source filter
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link.
AVFilterContext * dst
dest filter
int format
agreed upon media format
A filter pad used for either input or output.
const char * name
Pad name.
const char * name
Filter name.
AVFormatInternal * internal
An opaque field for libavformat internal usage.
This structure describes decoded (raw) audio or video data.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
int interpolation
interp_mode
avfilter_action_func * interp
Used for passing data between threads.
#define av_malloc_array(a, b)
static float sanitizef(float f)
@ INTERPOLATE_TETRAHEDRAL
#define DEFINE_INTERP_FUNC_PLANAR(name, nbits, depth)
static int nearest_sample_index(float *data, float x, int low, int hi)
static int skip_line(const char *p)
static int set_identity_matrix(AVFilterContext *ctx, int size)
#define DEFINE_INTERP_FUNC(name, nbits)
#define NEXT_LINE_OR_GOTO(loop_cond, label)
static int parse_m3d(AVFilterContext *ctx, FILE *f)
static int query_formats(AVFilterContext *ctx)
static int config_input(AVFilterLink *inlink)
static struct rgbvec lerp(const struct rgbvec *v0, const struct rgbvec *v1, float f)
#define NEXT_FLOAT_OR_GOTO(value, label)
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
static struct rgbvec interp_tetrahedral(const LUT3DContext *lut3d, const struct rgbvec *s)
Tetrahedral interpolation.
#define NEXT_LINE(loop_cond)
static struct rgbvec interp_trilinear(const LUT3DContext *lut3d, const struct rgbvec *s)
Interpolate using the 8 vertices of a cube.
static char * fget_next_word(char *dst, int max, FILE *f)
static float lerpf(float v0, float v1, float f)
static struct rgbvec interp_prism(const LUT3DContext *lut3d, const struct rgbvec *s)
static struct rgbvec apply_prelut(const Lut3DPreLut *prelut, const struct rgbvec *s)
static AVFrame * apply_lut(AVFilterLink *inlink, AVFrame *in)
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
static int parse_3dl(AVFilterContext *ctx, FILE *f)
static int allocate_3dlut(AVFilterContext *ctx, int lutsize, int prelut)
static struct rgbvec interp_pyramid(const LUT3DContext *lut3d, const struct rgbvec *s)
static struct rgbvec interp_nearest(const LUT3DContext *lut3d, const struct rgbvec *s)
Get the nearest defined point.
static float prelut_interp_1d_linear(const Lut3DPreLut *prelut, int idx, const float s)
#define DEFINE_INTERP_FUNC_PLANAR_FLOAT(name, depth)
static int parse_dat(AVFilterContext *ctx, FILE *f)
static int parse_cinespace(AVFilterContext *ctx, FILE *f)
static int parse_cube(AVFilterContext *ctx, FILE *f)
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.