40 int jobnr,
int nb_jobs);
43 static inline float lerpf(
float v0,
float v1,
float f)
45 return v0 + (v1 -
v0) *
f;
51 const float strength = -
lerpf(16.f, 4.01f,
s->strength);
55 for (
int p = 0; p <
s->nb_planes; p++) {
56 const int slice_start = (
s->planeheight[p] * jobnr) / nb_jobs;
57 const int slice_end = (
s->planeheight[p] * (jobnr+1)) / nb_jobs;
58 const int linesize =
out->linesize[p];
59 const int in_linesize =
in->linesize[p];
60 const int w =
s->planewidth[p];
62 const int h =
s->planeheight[p];
64 uint8_t *dst =
out->data[p] + slice_start * linesize;
67 if (!((1 << p) &
s->planes)) {
73 for (
int y = slice_start; y <
slice_end; y++) {
74 const int y0 =
FFMAX(y - 1, 0);
75 const int y1 =
FFMIN(y + 1, h1);
76 for (
int x = 0; x <
w; x++) {
77 const int x0 =
FFMAX(x - 1, 0);
78 const int x1 =
FFMIN(x + 1, w1);
79 int a =
src[y0 * in_linesize + x0];
80 int b =
src[y0 * in_linesize + x];
81 int c =
src[y0 * in_linesize + x1];
82 int d =
src[y * in_linesize + x0];
83 int e =
src[y * in_linesize + x];
84 int f =
src[y * in_linesize + x1];
85 int g =
src[y1 * in_linesize + x0];
86 int h =
src[y1 * in_linesize + x];
87 int i =
src[y1 * in_linesize + x1];
101 amp = sqrtf(
av_clipf(
FFMIN(mn, 511 - mx) / (
float)mx, 0.f, 1.f));
117 const float strength = -
lerpf(16.f, 4.01f,
s->strength);
118 const int max = 2 * (1 <<
s->depth) - 1;
122 for (
int p = 0; p <
s->nb_planes; p++) {
123 const int slice_start = (
s->planeheight[p] * jobnr) / nb_jobs;
124 const int slice_end = (
s->planeheight[p] * (jobnr+1)) / nb_jobs;
125 const int linesize =
out->linesize[p] / 2;
126 const int in_linesize =
in->linesize[p] / 2;
127 const int w =
s->planewidth[p];
128 const int w1 =
w - 1;
129 const int h =
s->planeheight[p];
130 const int h1 =
h - 1;
131 uint16_t *dst = (uint16_t *)
out->data[p] + slice_start * linesize;
132 const uint16_t *
src = (
const uint16_t *)
in->data[p];
134 if (!((1 << p) &
s->planes)) {
140 for (
int y = slice_start; y <
slice_end; y++) {
141 const int y0 =
FFMAX(y - 1, 0);
142 const int y1 =
FFMIN(y + 1, h1);
143 for (
int x = 0; x <
w; x++) {
144 const int x0 =
FFMAX(x - 1, 0);
145 const int x1 =
FFMIN(x + 1, w1);
146 int a =
src[y0 * in_linesize + x0];
147 int b =
src[y0 * in_linesize + x];
148 int c =
src[y0 * in_linesize + x1];
149 int d =
src[y * in_linesize + x0];
150 int e =
src[y * in_linesize + x];
151 int f =
src[y * in_linesize + x1];
152 int g =
src[y1 * in_linesize + x0];
153 int h =
src[y1 * in_linesize + x];
154 int i =
src[y1 * in_linesize + x1];
155 int mn, mn2, mx, mx2;
249 s->planeheight[0] =
s->planeheight[3] = inlink->
h;
251 s->planewidth[0] =
s->planewidth[3] = inlink->
w;
253 s->depth =
desc->comp[0].depth;
254 s->nb_planes =
desc->nb_components;
278 #define OFFSET(x) offsetof(CASContext, x)
279 #define VF AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
293 .priv_class = &cas_class,
static const AVFilterPad inputs[]
static const AVFilterPad outputs[]
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, char *res, int res_len, int flags)
uint8_t pi<< 24) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0f/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_U8, uint8_t,(*(const uint8_t *) pi - 0x80) *(1.0/(1<< 7))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S16, int16_t,(*(const int16_t *) pi >> 8)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0f/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S16, int16_t, *(const int16_t *) pi *(1.0/(1<< 15))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_S32, int32_t,(*(const int32_t *) pi >> 24)+0x80) CONV_FUNC_GROUP(AV_SAMPLE_FMT_FLT, float, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0f/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_DBL, double, AV_SAMPLE_FMT_S32, int32_t, *(const int32_t *) pi *(1.0/(1U<< 31))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_FLT, float, av_clip_uint8(lrintf(*(const float *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_FLT, float, av_clip_int16(lrintf(*(const float *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_FLT, float, av_clipl_int32(llrintf(*(const float *) pi *(1U<< 31)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_U8, uint8_t, AV_SAMPLE_FMT_DBL, double, av_clip_uint8(lrint(*(const double *) pi *(1<< 7))+0x80)) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S16, int16_t, AV_SAMPLE_FMT_DBL, double, av_clip_int16(lrint(*(const double *) pi *(1<< 15)))) CONV_FUNC_GROUP(AV_SAMPLE_FMT_S32, int32_t, AV_SAMPLE_FMT_DBL, double, av_clipl_int32(llrint(*(const double *) pi *(1U<< 31)))) #define SET_CONV_FUNC_GROUP(ofmt, ifmt) static void set_generic_function(AudioConvert *ac) { } void ff_audio_convert_free(AudioConvert **ac) { if(! *ac) return;ff_dither_free(&(*ac) ->dc);av_freep(ac);} AudioConvert *ff_audio_convert_alloc(AVAudioResampleContext *avr, enum AVSampleFormat out_fmt, enum AVSampleFormat in_fmt, int channels, int sample_rate, int apply_map) { AudioConvert *ac;int in_planar, out_planar;ac=av_mallocz(sizeof(*ac));if(!ac) return NULL;ac->avr=avr;ac->out_fmt=out_fmt;ac->in_fmt=in_fmt;ac->channels=channels;ac->apply_map=apply_map;if(avr->dither_method !=AV_RESAMPLE_DITHER_NONE &&av_get_packed_sample_fmt(out_fmt)==AV_SAMPLE_FMT_S16 &&av_get_bytes_per_sample(in_fmt) > 2) { ac->dc=ff_dither_alloc(avr, out_fmt, in_fmt, channels, sample_rate, apply_map);if(!ac->dc) { av_free(ac);return NULL;} return ac;} in_planar=ff_sample_fmt_is_planar(in_fmt, channels);out_planar=ff_sample_fmt_is_planar(out_fmt, channels);if(in_planar==out_planar) { ac->func_type=CONV_FUNC_TYPE_FLAT;ac->planes=in_planar ? ac->channels :1;} else if(in_planar) ac->func_type=CONV_FUNC_TYPE_INTERLEAVE;else ac->func_type=CONV_FUNC_TYPE_DEINTERLEAVE;set_generic_function(ac);if(ARCH_AARCH64) ff_audio_convert_init_aarch64(ac);if(ARCH_ARM) ff_audio_convert_init_arm(ac);if(ARCH_X86) ff_audio_convert_init_x86(ac);return ac;} int ff_audio_convert(AudioConvert *ac, AudioData *out, AudioData *in) { int use_generic=1;int len=in->nb_samples;int p;if(ac->dc) { av_log(ac->avr, AV_LOG_TRACE, "%d samples - audio_convert: %s to %s (dithered)\n", len, av_get_sample_fmt_name(ac->in_fmt), av_get_sample_fmt_name(ac->out_fmt));return ff_convert_dither(ac-> in
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Main libavfilter public API header.
#define flags(name, subs,...)
#define AV_CEIL_RSHIFT(a, b)
static av_always_inline av_const unsigned av_clip_uintp2_c(int a, int p)
Clip a signed integer to an unsigned power of two range.
#define AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC
Some filters support a generic "enable" expression option that can be used to enable or disable a fil...
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
int av_frame_copy_props(AVFrame *dst, const AVFrame *src)
Copy only "metadata" fields from src to dst.
void av_image_copy_plane(uint8_t *dst, int dst_linesize, const uint8_t *src, int src_linesize, int bytewidth, int height)
Copy image plane from src to dst.
static int weight(int i, int blen, int offset)
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
static const struct @322 planes[]
static int slice_end(AVCodecContext *avctx, AVFrame *pict)
Handle slice ends.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
#define AV_PIX_FMT_GBRAP12
#define AV_PIX_FMT_YUV420P16
#define AV_PIX_FMT_YUV444P12
#define AV_PIX_FMT_YUV444P9
#define AV_PIX_FMT_YUV420P10
#define AV_PIX_FMT_YUV440P12
#define AV_PIX_FMT_GBRAP16
#define AV_PIX_FMT_YUV422P9
#define AV_PIX_FMT_YUVA444P10
#define AV_PIX_FMT_YUVA420P16
#define AV_PIX_FMT_YUV420P12
#define AV_PIX_FMT_YUVA420P10
#define AV_PIX_FMT_YUVA422P9
#define AV_PIX_FMT_YUV422P12
#define AV_PIX_FMT_GBRP10
#define AV_PIX_FMT_YUV422P10
#define AV_PIX_FMT_GRAY12
#define AV_PIX_FMT_GBRP12
#define AV_PIX_FMT_YUV420P9
#define AV_PIX_FMT_YUVA420P9
#define AV_PIX_FMT_YUVA422P10
#define AV_PIX_FMT_YUV420P14
AVPixelFormat
Pixel format.
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
@ AV_PIX_FMT_YUV440P
planar YUV 4:4:0 (1 Cr & Cb sample per 1x2 Y samples)
@ AV_PIX_FMT_YUV422P
planar YUV 4:2:2, 16bpp, (1 Cr & Cb sample per 2x1 Y samples)
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
@ AV_PIX_FMT_YUVA420P
planar YUV 4:2:0, 20bpp, (1 Cr & Cb sample per 2x2 Y & A samples)
@ AV_PIX_FMT_YUVJ440P
planar YUV 4:4:0 full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV440P and setting color_range
@ AV_PIX_FMT_YUV410P
planar YUV 4:1:0, 9bpp, (1 Cr & Cb sample per 4x4 Y samples)
@ AV_PIX_FMT_YUV411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples)
@ AV_PIX_FMT_YUV444P
planar YUV 4:4:4, 24bpp, (1 Cr & Cb sample per 1x1 Y samples)
@ AV_PIX_FMT_YUVA444P
planar YUV 4:4:4 32bpp, (1 Cr & Cb sample per 1x1 Y & A samples)
@ AV_PIX_FMT_YUVJ411P
planar YUV 4:1:1, 12bpp, (1 Cr & Cb sample per 4x1 Y samples) full scale (JPEG), deprecated in favor ...
@ AV_PIX_FMT_GBRAP
planar GBRA 4:4:4:4 32bpp
@ AV_PIX_FMT_YUVJ422P
planar YUV 4:2:2, 16bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV422P and setting col...
@ AV_PIX_FMT_YUVA422P
planar YUV 4:2:2 24bpp, (1 Cr & Cb sample per 2x1 Y & A samples)
@ AV_PIX_FMT_GBRP
planar GBR 4:4:4 24bpp
@ AV_PIX_FMT_YUVJ444P
planar YUV 4:4:4, 24bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV444P and setting col...
@ AV_PIX_FMT_YUVJ420P
planar YUV 4:2:0, 12bpp, full scale (JPEG), deprecated in favor of AV_PIX_FMT_YUV420P and setting col...
#define AV_PIX_FMT_YUVA422P12
#define AV_PIX_FMT_YUV422P14
#define AV_PIX_FMT_GRAY10
#define AV_PIX_FMT_GRAY14
#define AV_PIX_FMT_YUV422P16
#define AV_PIX_FMT_YUV440P10
#define AV_PIX_FMT_GRAY16
#define AV_PIX_FMT_GBRAP10
#define AV_PIX_FMT_YUVA444P16
#define AV_PIX_FMT_YUVA422P16
#define AV_PIX_FMT_GBRP16
#define AV_PIX_FMT_YUV444P14
#define AV_PIX_FMT_YUVA444P9
#define AV_PIX_FMT_GBRP14
#define AV_PIX_FMT_YUVA444P12
#define AV_PIX_FMT_YUV444P16
#define AV_PIX_FMT_YUV444P10
Describe the class of an AVClass context structure.
void * priv
private data for use by the filter
A link between two filters.
int w
agreed upon image width
int h
agreed upon image height
AVFilterContext * dst
dest filter
int format
agreed upon media format
A filter pad used for either input or output.
const char * name
Pad name.
const char * name
Filter name.
AVFormatInternal * internal
An opaque field for libavformat internal usage.
This structure describes decoded (raw) audio or video data.
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
int(* do_slice)(AVFilterContext *s, void *arg, int jobnr, int nb_jobs)
static av_cold int query_formats(AVFilterContext *avctx)
static const AVOption cas_options[]
static int filter_frame(AVFilterLink *inlink, AVFrame *in)
static int cas_slice8(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
static av_cold int config_input(AVFilterLink *inlink)
AVFILTER_DEFINE_CLASS(cas)
static const AVFilterPad cas_outputs[]
static float lerpf(float v0, float v1, float f)
static int cas_slice16(AVFilterContext *avctx, void *arg, int jobnr, int nb_jobs)
static const AVFilterPad cas_inputs[]
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.