FFmpeg  4.4.4
cinepakenc.c
Go to the documentation of this file.
1 /*
2  * Cinepak encoder (c) 2011 Tomas Härdin
3  * http://titan.codemill.se/~tomhar/cinepakenc.patch
4  *
5  * Fixes and improvements, vintage decoders compatibility
6  * (c) 2013, 2014 Rl, Aetey Global Technologies AB
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a
9  * copy of this software and associated documentation files (the "Software"),
10  * to deal in the Software without restriction, including without limitation
11  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
12  * and/or sell copies of the Software, and to permit persons to whom the
13  * Software is furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included
16  * in all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
22  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
23  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
24  * OTHER DEALINGS IN THE SOFTWARE.
25  */
26 
27 /*
28  * TODO:
29  * - optimize: color space conversion (move conversion to libswscale), ...
30  * MAYBE:
31  * - "optimally" split the frame into several non-regular areas
32  * using a separate codebook pair for each area and approximating
33  * the area by several rectangular strips (generally not full width ones)
34  * (use quadtree splitting? a simple fixed-granularity grid?)
35  */
36 
37 #include <string.h>
38 
39 #include "libavutil/avassert.h"
40 #include "libavutil/common.h"
41 #include "libavutil/internal.h"
42 #include "libavutil/intreadwrite.h"
43 #include "libavutil/lfg.h"
44 #include "libavutil/opt.h"
45 
46 #include "avcodec.h"
47 #include "elbg.h"
48 #include "internal.h"
49 
50 #define CVID_HEADER_SIZE 10
51 #define STRIP_HEADER_SIZE 12
52 #define CHUNK_HEADER_SIZE 4
53 
54 #define MB_SIZE 4 //4x4 MBs
55 #define MB_AREA (MB_SIZE * MB_SIZE)
56 
57 #define VECTOR_MAX 6 // six or four entries per vector depending on format
58 #define CODEBOOK_MAX 256 // size of a codebook
59 
60 #define MAX_STRIPS 32 // Note: having fewer choices regarding the number of strips speeds up encoding (obviously)
61 #define MIN_STRIPS 1 // Note: having more strips speeds up encoding the frame (this is less obvious)
62 // MAX_STRIPS limits the maximum quality you can reach
63 // when you want high quality on high resolutions,
64 // MIN_STRIPS limits the minimum efficiently encodable bit rate
65 // on low resolutions
66 // the numbers are only used for brute force optimization for the first frame,
67 // for the following frames they are adaptively readjusted
68 // NOTE the decoder in ffmpeg has its own arbitrary limitation on the number
69 // of strips, currently 32
70 
71 typedef enum CinepakMode {
75 
77 } CinepakMode;
78 
79 typedef enum mb_encoding {
83 
86 
87 typedef struct mb_info {
88  int v1_vector; // index into v1 codebook
89  int v1_error; // error when using V1 encoding
90  int v4_vector[4]; // indices into v4 codebook
91  int v4_error; // error when using V4 encoding
92  int skip_error; // error when block is skipped (aka copied from last frame)
93  mb_encoding best_encoding; // last result from calculate_mode_score()
94 } mb_info;
95 
96 typedef struct strip_info {
99  int v1_size;
100  int v4_size;
102 } strip_info;
103 
104 typedef struct CinepakEncContext {
105  const AVClass *class;
107  unsigned char *pict_bufs[4], *strip_buf, *frame_buf;
112  enum AVPixelFormat pix_fmt;
113  int w, h;
117  uint64_t lambda;
120  mb_info *mb; // MB RD state
121  int min_strips; // the current limit
122  int max_strips; // the current limit
123  // options
130 
131 #define OFFSET(x) offsetof(CinepakEncContext, x)
132 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
133 static const AVOption options[] = {
134  { "max_extra_cb_iterations", "Max extra codebook recalculation passes, more is better and slower",
135  OFFSET(max_extra_cb_iterations), AV_OPT_TYPE_INT, { .i64 = 2 }, 0, INT_MAX, VE },
136  { "skip_empty_cb", "Avoid wasting bytes, ignore vintage MacOS decoder",
137  OFFSET(skip_empty_cb), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
138  { "max_strips", "Limit strips/frame, vintage compatible is 1..3, otherwise the more the better",
139  OFFSET(max_max_strips), AV_OPT_TYPE_INT, { .i64 = 3 }, MIN_STRIPS, MAX_STRIPS, VE },
140  { "min_strips", "Enforce min strips/frame, more is worse and faster, must be <= max_strips",
141  OFFSET(min_min_strips), AV_OPT_TYPE_INT, { .i64 = MIN_STRIPS }, MIN_STRIPS, MAX_STRIPS, VE },
142  { "strip_number_adaptivity", "How fast the strip number adapts, more is slightly better, much slower",
143  OFFSET(strip_number_delta_range), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, MAX_STRIPS - MIN_STRIPS, VE },
144  { NULL },
145 };
146 
147 static const AVClass cinepak_class = {
148  .class_name = "cinepak",
149  .item_name = av_default_item_name,
150  .option = options,
151  .version = LIBAVUTIL_VERSION_INT,
152 };
153 
155 {
156  CinepakEncContext *s = avctx->priv_data;
157  int x, mb_count, strip_buf_size, frame_buf_size;
158 
159  if (avctx->width & 3 || avctx->height & 3) {
160  av_log(avctx, AV_LOG_ERROR, "width and height must be multiples of four (got %ix%i)\n",
161  avctx->width, avctx->height);
162  return AVERROR(EINVAL);
163  }
164 
165  if (s->min_min_strips > s->max_max_strips) {
166  av_log(avctx, AV_LOG_ERROR, "minimum number of strips must not exceed maximum (got %i and %i)\n",
167  s->min_min_strips, s->max_max_strips);
168  return AVERROR(EINVAL);
169  }
170 
171  if (!(s->last_frame = av_frame_alloc()))
172  return AVERROR(ENOMEM);
173  if (!(s->best_frame = av_frame_alloc()))
174  return AVERROR(ENOMEM);
175  if (!(s->scratch_frame = av_frame_alloc()))
176  return AVERROR(ENOMEM);
177  if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
178  if (!(s->input_frame = av_frame_alloc()))
179  return AVERROR(ENOMEM);
180 
181  if (!(s->codebook_input = av_malloc_array((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2, sizeof(*s->codebook_input))))
182  return AVERROR(ENOMEM);
183 
184  if (!(s->codebook_closest = av_malloc_array((avctx->width * avctx->height) >> 2, sizeof(*s->codebook_closest))))
185  return AVERROR(ENOMEM);
186 
187  for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
188  if (!(s->pict_bufs[x] = av_malloc((avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4) * (avctx->width * avctx->height) >> 2)))
189  return AVERROR(ENOMEM);
190 
191  mb_count = avctx->width * avctx->height / MB_AREA;
192 
193  // the largest possible chunk is 0x31 with all MBs encoded in V4 mode
194  // and full codebooks being replaced in INTER mode,
195  // which is 34 bits per MB
196  // and 2*256 extra flag bits per strip
197  strip_buf_size = STRIP_HEADER_SIZE + 3 * CHUNK_HEADER_SIZE + 2 * VECTOR_MAX * CODEBOOK_MAX + 4 * (mb_count + (mb_count + 15) / 16) + (2 * CODEBOOK_MAX) / 8;
198 
199  frame_buf_size = CVID_HEADER_SIZE + s->max_max_strips * strip_buf_size;
200 
201  if (!(s->strip_buf = av_malloc(strip_buf_size)))
202  return AVERROR(ENOMEM);
203 
204  if (!(s->frame_buf = av_malloc(frame_buf_size)))
205  return AVERROR(ENOMEM);
206 
207  if (!(s->mb = av_malloc_array(mb_count, sizeof(mb_info))))
208  return AVERROR(ENOMEM);
209 
210  av_lfg_init(&s->randctx, 1);
211  s->avctx = avctx;
212  s->w = avctx->width;
213  s->h = avctx->height;
214  s->frame_buf_size = frame_buf_size;
215  s->curframe = 0;
216  s->keyint = avctx->keyint_min;
217  s->pix_fmt = avctx->pix_fmt;
218 
219  // set up AVFrames
220  s->last_frame->data[0] = s->pict_bufs[0];
221  s->last_frame->linesize[0] = s->w;
222  s->best_frame->data[0] = s->pict_bufs[1];
223  s->best_frame->linesize[0] = s->w;
224  s->scratch_frame->data[0] = s->pict_bufs[2];
225  s->scratch_frame->linesize[0] = s->w;
226 
227  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
228  s->last_frame->data[1] = s->last_frame->data[0] + s->w * s->h;
229  s->last_frame->data[2] = s->last_frame->data[1] + ((s->w * s->h) >> 2);
230  s->last_frame->linesize[1] =
231  s->last_frame->linesize[2] = s->w >> 1;
232 
233  s->best_frame->data[1] = s->best_frame->data[0] + s->w * s->h;
234  s->best_frame->data[2] = s->best_frame->data[1] + ((s->w * s->h) >> 2);
235  s->best_frame->linesize[1] =
236  s->best_frame->linesize[2] = s->w >> 1;
237 
238  s->scratch_frame->data[1] = s->scratch_frame->data[0] + s->w * s->h;
239  s->scratch_frame->data[2] = s->scratch_frame->data[1] + ((s->w * s->h) >> 2);
240  s->scratch_frame->linesize[1] =
241  s->scratch_frame->linesize[2] = s->w >> 1;
242 
243  s->input_frame->data[0] = s->pict_bufs[3];
244  s->input_frame->linesize[0] = s->w;
245  s->input_frame->data[1] = s->input_frame->data[0] + s->w * s->h;
246  s->input_frame->data[2] = s->input_frame->data[1] + ((s->w * s->h) >> 2);
247  s->input_frame->linesize[1] =
248  s->input_frame->linesize[2] = s->w >> 1;
249  }
250 
251  s->min_strips = s->min_min_strips;
252  s->max_strips = s->max_max_strips;
253 
254  return 0;
255 }
256 
258  strip_info *info, int report,
259  int *training_set_v1_shrunk,
260  int *training_set_v4_shrunk)
261 {
262  // score = FF_LAMBDA_SCALE * error + lambda * bits
263  int x;
264  int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
265  int mb_count = s->w * h / MB_AREA;
266  mb_info *mb;
267  int64_t score1, score2, score3;
268  int64_t ret = s->lambda * ((info->v1_size ? CHUNK_HEADER_SIZE + info->v1_size * entry_size : 0) +
269  (info->v4_size ? CHUNK_HEADER_SIZE + info->v4_size * entry_size : 0) +
270  CHUNK_HEADER_SIZE) << 3;
271 
272  switch (info->mode) {
273  case MODE_V1_ONLY:
274  // one byte per MB
275  ret += s->lambda * 8 * mb_count;
276 
277  // while calculating we assume all blocks are ENC_V1
278  for (x = 0; x < mb_count; x++) {
279  mb = &s->mb[x];
280  ret += FF_LAMBDA_SCALE * mb->v1_error;
281  // this function is never called for report in MODE_V1_ONLY
282  // if (!report)
283  mb->best_encoding = ENC_V1;
284  }
285 
286  break;
287  case MODE_V1_V4:
288  // 9 or 33 bits per MB
289  if (report) {
290  // no moves between the corresponding training sets are allowed
291  *training_set_v1_shrunk = *training_set_v4_shrunk = 0;
292  for (x = 0; x < mb_count; x++) {
293  int mberr;
294  mb = &s->mb[x];
295  if (mb->best_encoding == ENC_V1)
296  score1 = s->lambda * 9 + FF_LAMBDA_SCALE * (mberr = mb->v1_error);
297  else
298  score1 = s->lambda * 33 + FF_LAMBDA_SCALE * (mberr = mb->v4_error);
299  ret += score1;
300  }
301  } else { // find best mode per block
302  for (x = 0; x < mb_count; x++) {
303  mb = &s->mb[x];
304  score1 = s->lambda * 9 + FF_LAMBDA_SCALE * mb->v1_error;
305  score2 = s->lambda * 33 + FF_LAMBDA_SCALE * mb->v4_error;
306 
307  if (score1 <= score2) {
308  ret += score1;
309  mb->best_encoding = ENC_V1;
310  } else {
311  ret += score2;
312  mb->best_encoding = ENC_V4;
313  }
314  }
315  }
316 
317  break;
318  case MODE_MC:
319  // 1, 10 or 34 bits per MB
320  if (report) {
321  int v1_shrunk = 0, v4_shrunk = 0;
322  for (x = 0; x < mb_count; x++) {
323  mb = &s->mb[x];
324  // it is OK to move blocks to ENC_SKIP here
325  // but not to any codebook encoding!
326  score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
327  if (mb->best_encoding == ENC_SKIP) {
328  ret += score1;
329  } else if (mb->best_encoding == ENC_V1) {
330  if ((score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error) >= score1) {
331  mb->best_encoding = ENC_SKIP;
332  ++v1_shrunk;
333  ret += score1;
334  } else {
335  ret += score2;
336  }
337  } else {
338  if ((score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error) >= score1) {
339  mb->best_encoding = ENC_SKIP;
340  ++v4_shrunk;
341  ret += score1;
342  } else {
343  ret += score3;
344  }
345  }
346  }
347  *training_set_v1_shrunk = v1_shrunk;
348  *training_set_v4_shrunk = v4_shrunk;
349  } else { // find best mode per block
350  for (x = 0; x < mb_count; x++) {
351  mb = &s->mb[x];
352  score1 = s->lambda * 1 + FF_LAMBDA_SCALE * mb->skip_error;
353  score2 = s->lambda * 10 + FF_LAMBDA_SCALE * mb->v1_error;
354  score3 = s->lambda * 34 + FF_LAMBDA_SCALE * mb->v4_error;
355 
356  if (score1 <= score2 && score1 <= score3) {
357  ret += score1;
358  mb->best_encoding = ENC_SKIP;
359  } else if (score2 <= score3) {
360  ret += score2;
361  mb->best_encoding = ENC_V1;
362  } else {
363  ret += score3;
364  mb->best_encoding = ENC_V4;
365  }
366  }
367  }
368 
369  break;
370  }
371 
372  return ret;
373 }
374 
375 static int write_chunk_header(unsigned char *buf, int chunk_type, int chunk_size)
376 {
377  buf[0] = chunk_type;
378  AV_WB24(&buf[1], chunk_size + CHUNK_HEADER_SIZE);
379  return CHUNK_HEADER_SIZE;
380 }
381 
383  int chunk_type_yuv, int chunk_type_gray,
384  unsigned char *buf)
385 {
386  int x, y, ret, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
387  int incremental_codebook_replacement_mode = 0; // hardcoded here,
388  // the compiler should notice that this is a constant -- rl
389 
390  ret = write_chunk_header(buf,
391  s->pix_fmt == AV_PIX_FMT_RGB24 ?
392  chunk_type_yuv + (incremental_codebook_replacement_mode ? 1 : 0) :
393  chunk_type_gray + (incremental_codebook_replacement_mode ? 1 : 0),
394  entry_size * size +
395  (incremental_codebook_replacement_mode ? (size + 31) / 32 * 4 : 0));
396 
397  // we do codebook encoding according to the "intra" mode
398  // but we keep the "dead" code for reference in case we will want
399  // to use incremental codebook updates (which actually would give us
400  // "kind of" motion compensation, especially in 1 strip/frame case) -- rl
401  // (of course, the code will be not useful as-is)
402  if (incremental_codebook_replacement_mode) {
403  int flags = 0;
404  int flagsind;
405  for (x = 0; x < size; x++) {
406  if (flags == 0) {
407  flagsind = ret;
408  ret += 4;
409  flags = 0x80000000;
410  } else
411  flags = ((flags >> 1) | 0x80000000);
412  for (y = 0; y < entry_size; y++)
413  buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
414  if ((flags & 0xffffffff) == 0xffffffff) {
415  AV_WB32(&buf[flagsind], flags);
416  flags = 0;
417  }
418  }
419  if (flags)
420  AV_WB32(&buf[flagsind], flags);
421  } else
422  for (x = 0; x < size; x++)
423  for (y = 0; y < entry_size; y++)
424  buf[ret++] = codebook[y + x * entry_size] ^ (y >= 4 ? 0x80 : 0);
425 
426  return ret;
427 }
428 
429 // sets out to the sub picture starting at (x,y) in in
430 static void get_sub_picture(CinepakEncContext *s, int x, int y,
431  uint8_t * in_data[4], int in_linesize[4],
432  uint8_t *out_data[4], int out_linesize[4])
433 {
434  out_data[0] = in_data[0] + x + y * in_linesize[0];
435  out_linesize[0] = in_linesize[0];
436 
437  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
438  out_data[1] = in_data[1] + (x >> 1) + (y >> 1) * in_linesize[1];
439  out_linesize[1] = in_linesize[1];
440 
441  out_data[2] = in_data[2] + (x >> 1) + (y >> 1) * in_linesize[2];
442  out_linesize[2] = in_linesize[2];
443  }
444 }
445 
446 // decodes the V1 vector in mb into the 4x4 MB pointed to by data
448  int linesize[4], int v1_vector, strip_info *info)
449 {
450  int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
451 
452  data[0][0] =
453  data[0][1] =
454  data[0][ linesize[0]] =
455  data[0][1 + linesize[0]] = info->v1_codebook[v1_vector * entry_size];
456 
457  data[0][2] =
458  data[0][3] =
459  data[0][2 + linesize[0]] =
460  data[0][3 + linesize[0]] = info->v1_codebook[v1_vector * entry_size + 1];
461 
462  data[0][ 2 * linesize[0]] =
463  data[0][1 + 2 * linesize[0]] =
464  data[0][ 3 * linesize[0]] =
465  data[0][1 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 2];
466 
467  data[0][2 + 2 * linesize[0]] =
468  data[0][3 + 2 * linesize[0]] =
469  data[0][2 + 3 * linesize[0]] =
470  data[0][3 + 3 * linesize[0]] = info->v1_codebook[v1_vector * entry_size + 3];
471 
472  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
473  data[1][0] =
474  data[1][1] =
475  data[1][ linesize[1]] =
476  data[1][1 + linesize[1]] = info->v1_codebook[v1_vector * entry_size + 4];
477 
478  data[2][0] =
479  data[2][1] =
480  data[2][ linesize[2]] =
481  data[2][1 + linesize[2]] = info->v1_codebook[v1_vector * entry_size + 5];
482  }
483 }
484 
485 // decodes the V4 vectors in mb into the 4x4 MB pointed to by data
487  int linesize[4], int *v4_vector, strip_info *info)
488 {
489  int i, x, y, entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
490 
491  for (i = y = 0; y < 4; y += 2) {
492  for (x = 0; x < 4; x += 2, i++) {
493  data[0][x + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size];
494  data[0][x + 1 + y * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 1];
495  data[0][x + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 2];
496  data[0][x + 1 + (y + 1) * linesize[0]] = info->v4_codebook[v4_vector[i] * entry_size + 3];
497 
498  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
499  data[1][(x >> 1) + (y >> 1) * linesize[1]] = info->v4_codebook[v4_vector[i] * entry_size + 4];
500  data[2][(x >> 1) + (y >> 1) * linesize[2]] = info->v4_codebook[v4_vector[i] * entry_size + 5];
501  }
502  }
503  }
504 }
505 
507  uint8_t *a_data[4], int a_linesize[4],
508  uint8_t *b_data[4], int b_linesize[4])
509 {
510  int y, p;
511 
512  for (y = 0; y < MB_SIZE; y++)
513  memcpy(a_data[0] + y * a_linesize[0], b_data[0] + y * b_linesize[0],
514  MB_SIZE);
515 
516  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
517  for (p = 1; p <= 2; p++)
518  for (y = 0; y < MB_SIZE / 2; y++)
519  memcpy(a_data[p] + y * a_linesize[p],
520  b_data[p] + y * b_linesize[p],
521  MB_SIZE / 2);
522  }
523 }
524 
525 static int encode_mode(CinepakEncContext *s, int h,
526  uint8_t *scratch_data[4], int scratch_linesize[4],
527  uint8_t *last_data[4], int last_linesize[4],
528  strip_info *info, unsigned char *buf)
529 {
530  int x, y, z, bits, temp_size, header_ofs, ret = 0, mb_count = s->w * h / MB_AREA;
531  int needs_extra_bit, should_write_temp;
532  uint32_t flags;
533  unsigned char temp[64]; // 32/2 = 16 V4 blocks at 4 B each -> 64 B
534  mb_info *mb;
535  uint8_t *sub_scratch_data[4] = { 0 }, *sub_last_data[4] = { 0 };
536  int sub_scratch_linesize[4] = { 0 }, sub_last_linesize[4] = { 0 };
537 
538  // encode codebooks
539  ////// MacOS vintage decoder compatibility dictates the presence of
540  ////// the codebook chunk even when the codebook is empty - pretty dumb...
541  ////// and also the certain order of the codebook chunks -- rl
542  if (info->v4_size || !s->skip_empty_cb)
543  ret += encode_codebook(s, info->v4_codebook, info->v4_size, 0x20, 0x24, buf + ret);
544 
545  if (info->v1_size || !s->skip_empty_cb)
546  ret += encode_codebook(s, info->v1_codebook, info->v1_size, 0x22, 0x26, buf + ret);
547 
548  // update scratch picture
549  for (z = y = 0; y < h; y += MB_SIZE)
550  for (x = 0; x < s->w; x += MB_SIZE, z++) {
551  mb = &s->mb[z];
552 
553  get_sub_picture(s, x, y, scratch_data, scratch_linesize,
554  sub_scratch_data, sub_scratch_linesize);
555 
556  if (info->mode == MODE_MC && mb->best_encoding == ENC_SKIP) {
557  get_sub_picture(s, x, y, last_data, last_linesize,
558  sub_last_data, sub_last_linesize);
559  copy_mb(s, sub_scratch_data, sub_scratch_linesize,
560  sub_last_data, sub_last_linesize);
561  } else if (info->mode == MODE_V1_ONLY || mb->best_encoding == ENC_V1)
562  decode_v1_vector(s, sub_scratch_data, sub_scratch_linesize,
563  mb->v1_vector, info);
564  else
565  decode_v4_vector(s, sub_scratch_data, sub_scratch_linesize,
566  mb->v4_vector, info);
567  }
568 
569  switch (info->mode) {
570  case MODE_V1_ONLY:
571  ret += write_chunk_header(buf + ret, 0x32, mb_count);
572 
573  for (x = 0; x < mb_count; x++)
574  buf[ret++] = s->mb[x].v1_vector;
575 
576  break;
577  case MODE_V1_V4:
578  // remember header position
579  header_ofs = ret;
580  ret += CHUNK_HEADER_SIZE;
581 
582  for (x = 0; x < mb_count; x += 32) {
583  flags = 0;
584  for (y = x; y < FFMIN(x + 32, mb_count); y++)
585  if (s->mb[y].best_encoding == ENC_V4)
586  flags |= 1U << (31 - y + x);
587 
588  AV_WB32(&buf[ret], flags);
589  ret += 4;
590 
591  for (y = x; y < FFMIN(x + 32, mb_count); y++) {
592  mb = &s->mb[y];
593 
594  if (mb->best_encoding == ENC_V1)
595  buf[ret++] = mb->v1_vector;
596  else
597  for (z = 0; z < 4; z++)
598  buf[ret++] = mb->v4_vector[z];
599  }
600  }
601 
602  write_chunk_header(buf + header_ofs, 0x30, ret - header_ofs - CHUNK_HEADER_SIZE);
603 
604  break;
605  case MODE_MC:
606  // remember header position
607  header_ofs = ret;
608  ret += CHUNK_HEADER_SIZE;
609  flags = bits = temp_size = 0;
610 
611  for (x = 0; x < mb_count; x++) {
612  mb = &s->mb[x];
613  flags |= (uint32_t)(mb->best_encoding != ENC_SKIP) << (31 - bits++);
614  needs_extra_bit = 0;
615  should_write_temp = 0;
616 
617  if (mb->best_encoding != ENC_SKIP) {
618  if (bits < 32)
619  flags |= (uint32_t)(mb->best_encoding == ENC_V4) << (31 - bits++);
620  else
621  needs_extra_bit = 1;
622  }
623 
624  if (bits == 32) {
625  AV_WB32(&buf[ret], flags);
626  ret += 4;
627  flags = bits = 0;
628 
629  if (mb->best_encoding == ENC_SKIP || needs_extra_bit) {
630  memcpy(&buf[ret], temp, temp_size);
631  ret += temp_size;
632  temp_size = 0;
633  } else
634  should_write_temp = 1;
635  }
636 
637  if (needs_extra_bit) {
638  flags = (uint32_t)(mb->best_encoding == ENC_V4) << 31;
639  bits = 1;
640  }
641 
642  if (mb->best_encoding == ENC_V1)
643  temp[temp_size++] = mb->v1_vector;
644  else if (mb->best_encoding == ENC_V4)
645  for (z = 0; z < 4; z++)
646  temp[temp_size++] = mb->v4_vector[z];
647 
648  if (should_write_temp) {
649  memcpy(&buf[ret], temp, temp_size);
650  ret += temp_size;
651  temp_size = 0;
652  }
653  }
654 
655  if (bits > 0) {
656  AV_WB32(&buf[ret], flags);
657  ret += 4;
658  memcpy(&buf[ret], temp, temp_size);
659  ret += temp_size;
660  }
661 
662  write_chunk_header(buf + header_ofs, 0x31, ret - header_ofs - CHUNK_HEADER_SIZE);
663 
664  break;
665  }
666 
667  return ret;
668 }
669 
670 // computes distortion of 4x4 MB in b compared to a
672  uint8_t *a_data[4], int a_linesize[4],
673  uint8_t *b_data[4], int b_linesize[4])
674 {
675  int x, y, p, d, ret = 0;
676 
677  for (y = 0; y < MB_SIZE; y++)
678  for (x = 0; x < MB_SIZE; x++) {
679  d = a_data[0][x + y * a_linesize[0]] - b_data[0][x + y * b_linesize[0]];
680  ret += d * d;
681  }
682 
683  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
684  for (p = 1; p <= 2; p++) {
685  for (y = 0; y < MB_SIZE / 2; y++)
686  for (x = 0; x < MB_SIZE / 2; x++) {
687  d = a_data[p][x + y * a_linesize[p]] - b_data[p][x + y * b_linesize[p]];
688  ret += d * d;
689  }
690  }
691  }
692 
693  return ret;
694 }
695 
696 // return the possibly adjusted size of the codebook
697 #define CERTAIN(x) ((x) != ENC_UNCERTAIN)
698 static int quantize(CinepakEncContext *s, int h, uint8_t *data[4],
699  int linesize[4], int v1mode, strip_info *info,
700  mb_encoding encoding)
701 {
702  int x, y, i, j, k, x2, y2, x3, y3, plane, shift, mbn;
703  int entry_size = s->pix_fmt == AV_PIX_FMT_RGB24 ? 6 : 4;
704  int *codebook = v1mode ? info->v1_codebook : info->v4_codebook;
705  int size = v1mode ? info->v1_size : info->v4_size;
706  int64_t total_error = 0;
707  uint8_t vq_pict_buf[(MB_AREA * 3) / 2];
708  uint8_t *sub_data[4], *vq_data[4];
709  int sub_linesize[4], vq_linesize[4];
710 
711  for (mbn = i = y = 0; y < h; y += MB_SIZE) {
712  for (x = 0; x < s->w; x += MB_SIZE, ++mbn) {
713  int *base;
714 
715  if (CERTAIN(encoding)) {
716  // use for the training only the blocks known to be to be encoded [sic:-]
717  if (s->mb[mbn].best_encoding != encoding)
718  continue;
719  }
720 
721  base = s->codebook_input + i * entry_size;
722  if (v1mode) {
723  // subsample
724  for (j = y2 = 0; y2 < entry_size; y2 += 2)
725  for (x2 = 0; x2 < 4; x2 += 2, j++) {
726  plane = y2 < 4 ? 0 : 1 + (x2 >> 1);
727  shift = y2 < 4 ? 0 : 1;
728  x3 = shift ? 0 : x2;
729  y3 = shift ? 0 : y2;
730  base[j] = (data[plane][((x + x3) >> shift) + ((y + y3) >> shift) * linesize[plane]] +
731  data[plane][((x + x3) >> shift) + 1 + ((y + y3) >> shift) * linesize[plane]] +
732  data[plane][((x + x3) >> shift) + (((y + y3) >> shift) + 1) * linesize[plane]] +
733  data[plane][((x + x3) >> shift) + 1 + (((y + y3) >> shift) + 1) * linesize[plane]]) >> 2;
734  }
735  } else {
736  // copy
737  for (j = y2 = 0; y2 < MB_SIZE; y2 += 2) {
738  for (x2 = 0; x2 < MB_SIZE; x2 += 2)
739  for (k = 0; k < entry_size; k++, j++) {
740  plane = k >= 4 ? k - 3 : 0;
741 
742  if (k >= 4) {
743  x3 = (x + x2) >> 1;
744  y3 = (y + y2) >> 1;
745  } else {
746  x3 = x + x2 + (k & 1);
747  y3 = y + y2 + (k >> 1);
748  }
749 
750  base[j] = data[plane][x3 + y3 * linesize[plane]];
751  }
752  }
753  }
754  i += v1mode ? 1 : 4;
755  }
756  }
757 
758  if (i == 0) // empty training set, nothing to do
759  return 0;
760  if (i < size)
761  size = i;
762 
763  avpriv_init_elbg(s->codebook_input, entry_size, i, codebook, size, 1, s->codebook_closest, &s->randctx);
764  avpriv_do_elbg(s->codebook_input, entry_size, i, codebook, size, 1, s->codebook_closest, &s->randctx);
765 
766  // set up vq_data, which contains a single MB
767  vq_data[0] = vq_pict_buf;
768  vq_linesize[0] = MB_SIZE;
769  vq_data[1] = &vq_pict_buf[MB_AREA];
770  vq_data[2] = vq_data[1] + (MB_AREA >> 2);
771  vq_linesize[1] =
772  vq_linesize[2] = MB_SIZE >> 1;
773 
774  // copy indices
775  for (i = j = y = 0; y < h; y += MB_SIZE)
776  for (x = 0; x < s->w; x += MB_SIZE, j++) {
777  mb_info *mb = &s->mb[j];
778  // skip uninteresting blocks if we know their preferred encoding
779  if (CERTAIN(encoding) && mb->best_encoding != encoding)
780  continue;
781 
782  // point sub_data to current MB
783  get_sub_picture(s, x, y, data, linesize, sub_data, sub_linesize);
784 
785  if (v1mode) {
786  mb->v1_vector = s->codebook_closest[i];
787 
788  // fill in vq_data with V1 data
789  decode_v1_vector(s, vq_data, vq_linesize, mb->v1_vector, info);
790 
791  mb->v1_error = compute_mb_distortion(s, sub_data, sub_linesize,
792  vq_data, vq_linesize);
793  total_error += mb->v1_error;
794  } else {
795  for (k = 0; k < 4; k++)
796  mb->v4_vector[k] = s->codebook_closest[i + k];
797 
798  // fill in vq_data with V4 data
799  decode_v4_vector(s, vq_data, vq_linesize, mb->v4_vector, info);
800 
801  mb->v4_error = compute_mb_distortion(s, sub_data, sub_linesize,
802  vq_data, vq_linesize);
803  total_error += mb->v4_error;
804  }
805  i += v1mode ? 1 : 4;
806  }
807  // check that we did it right in the beginning of the function
808  av_assert0(i >= size); // training set is no smaller than the codebook
809 
810  return size;
811 }
812 
814  uint8_t *last_data[4], int last_linesize[4],
815  uint8_t *data[4], int linesize[4],
816  strip_info *info)
817 {
818  int x, y, i;
819  uint8_t *sub_last_data [4], *sub_pict_data [4];
820  int sub_last_linesize[4], sub_pict_linesize[4];
821 
822  for (i = y = 0; y < h; y += MB_SIZE)
823  for (x = 0; x < s->w; x += MB_SIZE, i++) {
824  get_sub_picture(s, x, y, last_data, last_linesize,
825  sub_last_data, sub_last_linesize);
826  get_sub_picture(s, x, y, data, linesize,
827  sub_pict_data, sub_pict_linesize);
828 
829  s->mb[i].skip_error =
831  sub_last_data, sub_last_linesize,
832  sub_pict_data, sub_pict_linesize);
833  }
834 }
835 
836 static void write_strip_header(CinepakEncContext *s, int y, int h, int keyframe,
837  unsigned char *buf, int strip_size)
838 {
839  // actually we are exclusively using intra strip coding (how much can we win
840  // otherwise? how to choose which part of a codebook to update?),
841  // keyframes are different only because we disallow ENC_SKIP on them -- rl
842  // (besides, the logic here used to be inverted: )
843  // buf[0] = keyframe ? 0x11: 0x10;
844  buf[0] = keyframe ? 0x10 : 0x11;
845  AV_WB24(&buf[1], strip_size + STRIP_HEADER_SIZE);
846  // AV_WB16(&buf[4], y); /* using absolute y values works -- rl */
847  AV_WB16(&buf[4], 0); /* using relative values works as well -- rl */
848  AV_WB16(&buf[6], 0);
849  // AV_WB16(&buf[8], y + h); /* using absolute y values works -- rl */
850  AV_WB16(&buf[8], h); /* using relative values works as well -- rl */
851  AV_WB16(&buf[10], s->w);
852 }
853 
854 static int rd_strip(CinepakEncContext *s, int y, int h, int keyframe,
855  uint8_t *last_data[4], int last_linesize[4],
856  uint8_t *data[4], int linesize[4],
857  uint8_t *scratch_data[4], int scratch_linesize[4],
858  unsigned char *buf, int64_t *best_score)
859 {
860  int64_t score = 0;
861  int best_size = 0;
862  strip_info info;
863  // for codebook optimization:
864  int v1enough, v1_size, v4enough, v4_size;
865  int new_v1_size, new_v4_size;
866  int v1shrunk, v4shrunk;
867 
868  if (!keyframe)
869  calculate_skip_errors(s, h, last_data, last_linesize, data, linesize,
870  &info);
871 
872  // try some powers of 4 for the size of the codebooks
873  // constraint the v4 codebook to be no bigger than v1 one,
874  // (and no less than v1_size/4)
875  // thus making v1 preferable and possibly losing small details? should be ok
876 #define SMALLEST_CODEBOOK 1
877  for (v1enough = 0, v1_size = SMALLEST_CODEBOOK; v1_size <= CODEBOOK_MAX && !v1enough; v1_size <<= 2) {
878  for (v4enough = 0, v4_size = 0; v4_size <= v1_size && !v4enough; v4_size = v4_size ? v4_size << 2 : v1_size >= SMALLEST_CODEBOOK << 2 ? v1_size >> 2 : SMALLEST_CODEBOOK) {
880  // try all modes
881  for (mode = 0; mode < MODE_COUNT; mode++) {
882  // don't allow MODE_MC in intra frames
883  if (keyframe && mode == MODE_MC)
884  continue;
885 
886  if (mode == MODE_V1_ONLY) {
887  info.v1_size = v1_size;
888  // the size may shrink even before optimizations if the input is short:
889  info.v1_size = quantize(s, h, data, linesize, 1,
890  &info, ENC_UNCERTAIN);
891  if (info.v1_size < v1_size)
892  // too few eligible blocks, no sense in trying bigger sizes
893  v1enough = 1;
894 
895  info.v4_size = 0;
896  } else { // mode != MODE_V1_ONLY
897  // if v4 codebook is empty then only allow V1-only mode
898  if (!v4_size)
899  continue;
900 
901  if (mode == MODE_V1_V4) {
902  info.v4_size = v4_size;
903  info.v4_size = quantize(s, h, data, linesize, 0,
904  &info, ENC_UNCERTAIN);
905  if (info.v4_size < v4_size)
906  // too few eligible blocks, no sense in trying bigger sizes
907  v4enough = 1;
908  }
909  }
910 
911  info.mode = mode;
912  // choose the best encoding per block, based on current experience
913  score = calculate_mode_score(s, h, &info, 0,
914  &v1shrunk, &v4shrunk);
915 
916  if (mode != MODE_V1_ONLY) {
917  int extra_iterations_limit = s->max_extra_cb_iterations;
918  // recompute the codebooks, omitting the extra blocks
919  // we assume we _may_ come here with more blocks to encode than before
920  info.v1_size = v1_size;
921  new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
922  if (new_v1_size < info.v1_size)
923  info.v1_size = new_v1_size;
924  // we assume we _may_ come here with more blocks to encode than before
925  info.v4_size = v4_size;
926  new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
927  if (new_v4_size < info.v4_size)
928  info.v4_size = new_v4_size;
929  // calculate the resulting score
930  // (do not move blocks to codebook encodings now, as some blocks may have
931  // got bigger errors despite a smaller training set - but we do not
932  // ever grow the training sets back)
933  for (;;) {
934  score = calculate_mode_score(s, h, &info, 1,
935  &v1shrunk, &v4shrunk);
936  // do we have a reason to reiterate? if so, have we reached the limit?
937  if ((!v1shrunk && !v4shrunk) || !extra_iterations_limit--)
938  break;
939  // recompute the codebooks, omitting the extra blocks
940  if (v1shrunk) {
941  info.v1_size = v1_size;
942  new_v1_size = quantize(s, h, data, linesize, 1, &info, ENC_V1);
943  if (new_v1_size < info.v1_size)
944  info.v1_size = new_v1_size;
945  }
946  if (v4shrunk) {
947  info.v4_size = v4_size;
948  new_v4_size = quantize(s, h, data, linesize, 0, &info, ENC_V4);
949  if (new_v4_size < info.v4_size)
950  info.v4_size = new_v4_size;
951  }
952  }
953  }
954 
955  if (best_size == 0 || score < *best_score) {
956  *best_score = score;
957  best_size = encode_mode(s, h,
958  scratch_data, scratch_linesize,
959  last_data, last_linesize, &info,
960  s->strip_buf + STRIP_HEADER_SIZE);
961 
962  write_strip_header(s, y, h, keyframe, s->strip_buf, best_size);
963  }
964  }
965  }
966  }
967 
968  best_size += STRIP_HEADER_SIZE;
969  memcpy(buf, s->strip_buf, best_size);
970 
971  return best_size;
972 }
973 
974 static int write_cvid_header(CinepakEncContext *s, unsigned char *buf,
975  int num_strips, int data_size, int isakeyframe)
976 {
977  buf[0] = isakeyframe ? 0 : 1;
978  AV_WB24(&buf[1], data_size + CVID_HEADER_SIZE);
979  AV_WB16(&buf[4], s->w);
980  AV_WB16(&buf[6], s->h);
981  AV_WB16(&buf[8], num_strips);
982 
983  return CVID_HEADER_SIZE;
984 }
985 
987  int isakeyframe, unsigned char *buf, int buf_size)
988 {
989  int num_strips, strip, i, y, nexty, size, temp_size, best_size;
990  uint8_t *last_data [4], *data [4], *scratch_data [4];
991  int last_linesize[4], linesize[4], scratch_linesize[4];
992  int64_t best_score = 0, score, score_temp;
993  int best_nstrips;
994 
995  if (s->pix_fmt == AV_PIX_FMT_RGB24) {
996  int x;
997  // build a copy of the given frame in the correct colorspace
998  for (y = 0; y < s->h; y += 2)
999  for (x = 0; x < s->w; x += 2) {
1000  uint8_t *ir[2];
1001  int32_t r, g, b, rr, gg, bb;
1002  ir[0] = frame->data[0] + x * 3 + y * frame->linesize[0];
1003  ir[1] = ir[0] + frame->linesize[0];
1004  get_sub_picture(s, x, y,
1005  s->input_frame->data, s->input_frame->linesize,
1006  scratch_data, scratch_linesize);
1007  r = g = b = 0;
1008  for (i = 0; i < 4; ++i) {
1009  int i1, i2;
1010  i1 = (i & 1);
1011  i2 = (i >= 2);
1012  rr = ir[i2][i1 * 3 + 0];
1013  gg = ir[i2][i1 * 3 + 1];
1014  bb = ir[i2][i1 * 3 + 2];
1015  r += rr;
1016  g += gg;
1017  b += bb;
1018  // using fixed point arithmetic for portable repeatability, scaling by 2^23
1019  // "Y"
1020  // rr = 0.2857 * rr + 0.5714 * gg + 0.1429 * bb;
1021  rr = (2396625 * rr + 4793251 * gg + 1198732 * bb) >> 23;
1022  if (rr < 0)
1023  rr = 0;
1024  else if (rr > 255)
1025  rr = 255;
1026  scratch_data[0][i1 + i2 * scratch_linesize[0]] = rr;
1027  }
1028  // let us scale down as late as possible
1029  // r /= 4; g /= 4; b /= 4;
1030  // "U"
1031  // rr = -0.1429 * r - 0.2857 * g + 0.4286 * b;
1032  rr = (-299683 * r - 599156 * g + 898839 * b) >> 23;
1033  if (rr < -128)
1034  rr = -128;
1035  else if (rr > 127)
1036  rr = 127;
1037  scratch_data[1][0] = rr + 128; // quantize needs unsigned
1038  // "V"
1039  // rr = 0.3571 * r - 0.2857 * g - 0.0714 * b;
1040  rr = (748893 * r - 599156 * g - 149737 * b) >> 23;
1041  if (rr < -128)
1042  rr = -128;
1043  else if (rr > 127)
1044  rr = 127;
1045  scratch_data[2][0] = rr + 128; // quantize needs unsigned
1046  }
1047  }
1048 
1049  // would be nice but quite certainly incompatible with vintage players:
1050  // support encoding zero strips (meaning skip the whole frame)
1051  for (num_strips = s->min_strips; num_strips <= s->max_strips && num_strips <= s->h / MB_SIZE; num_strips++) {
1052  score = 0;
1053  size = 0;
1054 
1055  for (y = 0, strip = 1; y < s->h; strip++, y = nexty) {
1056  int strip_height;
1057 
1058  nexty = strip * s->h / num_strips; // <= s->h
1059  // make nexty the next multiple of 4 if not already there
1060  if (nexty & 3)
1061  nexty += 4 - (nexty & 3);
1062 
1063  strip_height = nexty - y;
1064  if (strip_height <= 0) { // can this ever happen?
1065  av_log(s->avctx, AV_LOG_INFO, "skipping zero height strip %i of %i\n", strip, num_strips);
1066  continue;
1067  }
1068 
1069  if (s->pix_fmt == AV_PIX_FMT_RGB24)
1070  get_sub_picture(s, 0, y,
1071  s->input_frame->data, s->input_frame->linesize,
1072  data, linesize);
1073  else
1074  get_sub_picture(s, 0, y,
1075  (uint8_t **)frame->data, (int *)frame->linesize,
1076  data, linesize);
1077  get_sub_picture(s, 0, y,
1078  s->last_frame->data, s->last_frame->linesize,
1079  last_data, last_linesize);
1080  get_sub_picture(s, 0, y,
1081  s->scratch_frame->data, s->scratch_frame->linesize,
1082  scratch_data, scratch_linesize);
1083 
1084  if ((temp_size = rd_strip(s, y, strip_height, isakeyframe,
1085  last_data, last_linesize, data, linesize,
1086  scratch_data, scratch_linesize,
1087  s->frame_buf + size + CVID_HEADER_SIZE,
1088  &score_temp)) < 0)
1089  return temp_size;
1090 
1091  score += score_temp;
1092  size += temp_size;
1093  }
1094 
1095  if (best_score == 0 || score < best_score) {
1096  best_score = score;
1097  best_size = size + write_cvid_header(s, s->frame_buf, num_strips, size, isakeyframe);
1098 
1099  FFSWAP(AVFrame *, s->best_frame, s->scratch_frame);
1100  memcpy(buf, s->frame_buf, best_size);
1101  best_nstrips = num_strips;
1102  }
1103  // avoid trying too many strip numbers without a real reason
1104  // (this makes the processing of the very first frame faster)
1105  if (num_strips - best_nstrips > 4)
1106  break;
1107  }
1108 
1109  // let the number of strips slowly adapt to the changes in the contents,
1110  // compared to full bruteforcing every time this will occasionally lead
1111  // to some r/d performance loss but makes encoding up to several times faster
1112  if (!s->strip_number_delta_range) {
1113  if (best_nstrips == s->max_strips) { // let us try to step up
1114  s->max_strips = best_nstrips + 1;
1115  if (s->max_strips >= s->max_max_strips)
1116  s->max_strips = s->max_max_strips;
1117  } else { // try to step down
1118  s->max_strips = best_nstrips;
1119  }
1120  s->min_strips = s->max_strips - 1;
1121  if (s->min_strips < s->min_min_strips)
1122  s->min_strips = s->min_min_strips;
1123  } else {
1124  s->max_strips = best_nstrips + s->strip_number_delta_range;
1125  if (s->max_strips >= s->max_max_strips)
1126  s->max_strips = s->max_max_strips;
1127  s->min_strips = best_nstrips - s->strip_number_delta_range;
1128  if (s->min_strips < s->min_min_strips)
1129  s->min_strips = s->min_min_strips;
1130  }
1131 
1132  return best_size;
1133 }
1134 
1136  const AVFrame *frame, int *got_packet)
1137 {
1138  CinepakEncContext *s = avctx->priv_data;
1139  int ret;
1140 
1141  s->lambda = frame->quality ? frame->quality - 1 : 2 * FF_LAMBDA_SCALE;
1142 
1143  if ((ret = ff_alloc_packet2(avctx, pkt, s->frame_buf_size, 0)) < 0)
1144  return ret;
1145  ret = rd_frame(s, frame, (s->curframe == 0), pkt->data, s->frame_buf_size);
1146  pkt->size = ret;
1147  if (s->curframe == 0)
1149  *got_packet = 1;
1150 
1151  FFSWAP(AVFrame *, s->last_frame, s->best_frame);
1152 
1153  if (++s->curframe >= s->keyint)
1154  s->curframe = 0;
1155 
1156  return 0;
1157 }
1158 
1160 {
1161  CinepakEncContext *s = avctx->priv_data;
1162  int x;
1163 
1164  av_frame_free(&s->last_frame);
1165  av_frame_free(&s->best_frame);
1166  av_frame_free(&s->scratch_frame);
1167  if (avctx->pix_fmt == AV_PIX_FMT_RGB24)
1168  av_frame_free(&s->input_frame);
1169  av_freep(&s->codebook_input);
1170  av_freep(&s->codebook_closest);
1171  av_freep(&s->strip_buf);
1172  av_freep(&s->frame_buf);
1173  av_freep(&s->mb);
1174 
1175  for (x = 0; x < (avctx->pix_fmt == AV_PIX_FMT_RGB24 ? 4 : 3); x++)
1176  av_freep(&s->pict_bufs[x]);
1177 
1178  return 0;
1179 }
1180 
1182  .name = "cinepak",
1183  .long_name = NULL_IF_CONFIG_SMALL("Cinepak"),
1184  .type = AVMEDIA_TYPE_VIDEO,
1185  .id = AV_CODEC_ID_CINEPAK,
1186  .priv_data_size = sizeof(CinepakEncContext),
1188  .encode2 = cinepak_encode_frame,
1189  .close = cinepak_encode_end,
1191  .priv_class = &cinepak_class,
1193 };
#define av_cold
Definition: attributes.h:88
uint8_t
int32_t
simple assert() macros that are a bit more flexible than ISO C assert().
#define av_assert0(cond)
assert() equivalent, that is always enabled.
Definition: avassert.h:37
Libavcodec external API header.
static av_cold int init(AVCodecContext *avctx)
Definition: avrndec.c:31
#define flags(name, subs,...)
Definition: cbs_av1.c:561
#define s(width, name)
Definition: cbs_vp9.c:257
static const unsigned codebook[256][2]
Definition: cfhdenc.c:42
#define report
Definition: checkasm.h:136
static void decode_v1_vector(CinepakEncContext *s, uint8_t *data[4], int linesize[4], int v1_vector, strip_info *info)
Definition: cinepakenc.c:447
static int cinepak_encode_frame(AVCodecContext *avctx, AVPacket *pkt, const AVFrame *frame, int *got_packet)
Definition: cinepakenc.c:1135
#define STRIP_HEADER_SIZE
Definition: cinepakenc.c:51
static int rd_strip(CinepakEncContext *s, int y, int h, int keyframe, uint8_t *last_data[4], int last_linesize[4], uint8_t *data[4], int linesize[4], uint8_t *scratch_data[4], int scratch_linesize[4], unsigned char *buf, int64_t *best_score)
Definition: cinepakenc.c:854
#define VECTOR_MAX
Definition: cinepakenc.c:57
static const AVOption options[]
Definition: cinepakenc.c:133
static int rd_frame(CinepakEncContext *s, const AVFrame *frame, int isakeyframe, unsigned char *buf, int buf_size)
Definition: cinepakenc.c:986
#define VE
Definition: cinepakenc.c:132
#define CVID_HEADER_SIZE
Definition: cinepakenc.c:50
#define MB_AREA
Definition: cinepakenc.c:55
static void write_strip_header(CinepakEncContext *s, int y, int h, int keyframe, unsigned char *buf, int strip_size)
Definition: cinepakenc.c:836
#define CHUNK_HEADER_SIZE
Definition: cinepakenc.c:52
static int encode_mode(CinepakEncContext *s, int h, uint8_t *scratch_data[4], int scratch_linesize[4], uint8_t *last_data[4], int last_linesize[4], strip_info *info, unsigned char *buf)
Definition: cinepakenc.c:525
static int compute_mb_distortion(CinepakEncContext *s, uint8_t *a_data[4], int a_linesize[4], uint8_t *b_data[4], int b_linesize[4])
Definition: cinepakenc.c:671
#define SMALLEST_CODEBOOK
#define MB_SIZE
Definition: cinepakenc.c:54
static void get_sub_picture(CinepakEncContext *s, int x, int y, uint8_t *in_data[4], int in_linesize[4], uint8_t *out_data[4], int out_linesize[4])
Definition: cinepakenc.c:430
static int write_cvid_header(CinepakEncContext *s, unsigned char *buf, int num_strips, int data_size, int isakeyframe)
Definition: cinepakenc.c:974
#define CODEBOOK_MAX
Definition: cinepakenc.c:58
static int quantize(CinepakEncContext *s, int h, uint8_t *data[4], int linesize[4], int v1mode, strip_info *info, mb_encoding encoding)
Definition: cinepakenc.c:698
static int64_t calculate_mode_score(CinepakEncContext *s, int h, strip_info *info, int report, int *training_set_v1_shrunk, int *training_set_v4_shrunk)
Definition: cinepakenc.c:257
#define MIN_STRIPS
Definition: cinepakenc.c:61
CinepakMode
Definition: cinepakenc.c:71
@ MODE_V1_ONLY
Definition: cinepakenc.c:72
@ MODE_MC
Definition: cinepakenc.c:74
@ MODE_V1_V4
Definition: cinepakenc.c:73
@ MODE_COUNT
Definition: cinepakenc.c:76
static void calculate_skip_errors(CinepakEncContext *s, int h, uint8_t *last_data[4], int last_linesize[4], uint8_t *data[4], int linesize[4], strip_info *info)
Definition: cinepakenc.c:813
static void decode_v4_vector(CinepakEncContext *s, uint8_t *data[4], int linesize[4], int *v4_vector, strip_info *info)
Definition: cinepakenc.c:486
AVCodec ff_cinepak_encoder
Definition: cinepakenc.c:1181
#define CERTAIN(x)
Definition: cinepakenc.c:697
static int encode_codebook(CinepakEncContext *s, int *codebook, int size, int chunk_type_yuv, int chunk_type_gray, unsigned char *buf)
Definition: cinepakenc.c:382
static void copy_mb(CinepakEncContext *s, uint8_t *a_data[4], int a_linesize[4], uint8_t *b_data[4], int b_linesize[4])
Definition: cinepakenc.c:506
#define OFFSET(x)
Definition: cinepakenc.c:131
static int write_chunk_header(unsigned char *buf, int chunk_type, int chunk_size)
Definition: cinepakenc.c:375
mb_encoding
Definition: cinepakenc.c:79
@ ENC_UNCERTAIN
Definition: cinepakenc.c:84
@ ENC_V4
Definition: cinepakenc.c:81
@ ENC_V1
Definition: cinepakenc.c:80
@ ENC_SKIP
Definition: cinepakenc.c:82
static const AVClass cinepak_class
Definition: cinepakenc.c:147
#define MAX_STRIPS
Definition: cinepakenc.c:60
static av_cold int cinepak_encode_init(AVCodecContext *avctx)
Definition: cinepakenc.c:154
static av_cold int cinepak_encode_end(AVCodecContext *avctx)
Definition: cinepakenc.c:1159
common internal and external API header
#define FFSWAP(type, a, b)
Definition: common.h:108
#define FFMIN(a, b)
Definition: common.h:105
#define NULL
Definition: coverity.c:32
static AVFrame * frame
mode
Use these values in ebur128_init (or'ed).
Definition: ebur128.h:83
int avpriv_init_elbg(int *points, int dim, int numpoints, int *codebook, int numCB, int max_steps, int *closest_cb, AVLFG *rand_state)
Initialize the **codebook vector for the elbg algorithm.
Definition: elbg.c:337
int avpriv_do_elbg(int *points, int dim, int numpoints, int *codebook, int numCB, int max_steps, int *closest_cb, AVLFG *rand_state)
Implementation of the Enhanced LBG Algorithm Based on the paper "Neural Networks 14:1219-1237" that c...
Definition: elbg.c:371
int ff_alloc_packet2(AVCodecContext *avctx, AVPacket *avpkt, int64_t size, int64_t min_size)
Check AVPacket size and/or allocate data.
Definition: encode.c:33
@ AV_OPT_TYPE_INT
Definition: opt.h:225
@ AV_OPT_TYPE_BOOL
Definition: opt.h:242
@ AV_CODEC_ID_CINEPAK
Definition: codec_id.h:92
#define AV_PKT_FLAG_KEY
The packet contains a keyframe.
Definition: packet.h:410
#define FF_LAMBDA_SCALE
Definition: avutil.h:226
#define AVERROR(e)
Definition: error.h:43
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
Definition: frame.c:203
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
Definition: frame.c:190
#define AV_LOG_INFO
Standard information.
Definition: log.h:205
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
Definition: log.h:194
const char * av_default_item_name(void *ptr)
Return the context name.
Definition: log.c:235
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
#define LIBAVUTIL_VERSION_INT
Definition: version.h:85
for(j=16;j >0;--j)
int i
Definition: input.c:407
#define AV_WB24(p, d)
Definition: intreadwrite.h:450
#define AV_WB32(p, v)
Definition: intreadwrite.h:419
#define AV_WB16(p, v)
Definition: intreadwrite.h:405
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
Definition: lfg.c:32
#define FF_CODEC_CAP_INIT_THREADSAFE
The codec does not modify any global variables in the init function, allowing to call the init functi...
Definition: internal.h:41
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Definition: internal.h:49
common internal API header
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:117
static enum AVPixelFormat pix_fmts[]
Definition: libkvazaar.c:309
const char data[16]
Definition: mxf.c:142
AVOptions.
AVPixelFormat
Pixel format.
Definition: pixfmt.h:64
@ AV_PIX_FMT_NONE
Definition: pixfmt.h:65
@ AV_PIX_FMT_RGB24
packed RGB 8:8:8, 24bpp, RGBRGB...
Definition: pixfmt.h:68
@ AV_PIX_FMT_GRAY8
Y , 8bpp.
Definition: pixfmt.h:74
static int shift(int a, int b)
Definition: sonic.c:82
Describe the class of an AVClass context structure.
Definition: log.h:67
const char * class_name
The name of the class; usually it is the same name as the context structure type to which the AVClass...
Definition: log.h:72
main external API structure.
Definition: avcodec.h:536
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
Definition: avcodec.h:746
int width
picture width / height.
Definition: avcodec.h:709
int keyint_min
minimum GOP size
Definition: avcodec.h:1117
void * priv_data
Definition: avcodec.h:563
AVCodec.
Definition: codec.h:197
const char * name
Name of the codec implementation.
Definition: codec.h:204
This structure describes decoded (raw) audio or video data.
Definition: frame.h:318
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
Definition: frame.h:332
int quality
quality (between 1 (good) and FF_LAMBDA_MAX (bad))
Definition: frame.h:441
int linesize[AV_NUM_DATA_POINTERS]
For video, size in bytes of each picture line.
Definition: frame.h:349
Context structure for the Lagged Fibonacci PRNG.
Definition: lfg.h:33
AVOption.
Definition: opt.h:248
This structure stores compressed data.
Definition: packet.h:346
int flags
A combination of AV_PKT_FLAG values.
Definition: packet.h:375
int size
Definition: packet.h:370
uint8_t * data
Definition: packet.h:369
unsigned char * pict_bufs[4]
Definition: cinepakenc.c:107
AVFrame * input_frame
Definition: cinepakenc.c:111
unsigned char * frame_buf
Definition: cinepakenc.c:107
AVFrame * best_frame
Definition: cinepakenc.c:109
unsigned char * strip_buf
Definition: cinepakenc.c:107
AVFrame * scratch_frame
Definition: cinepakenc.c:110
int strip_number_delta_range
Definition: cinepakenc.c:128
int * codebook_closest
Definition: cinepakenc.c:119
enum AVPixelFormat pix_fmt
Definition: cinepakenc.c:112
AVFrame * last_frame
Definition: cinepakenc.c:108
AVCodecContext * avctx
Definition: cinepakenc.c:106
int max_extra_cb_iterations
Definition: cinepakenc.c:124
int v4_vector[4]
Definition: cinepakenc.c:90
int v1_error
Definition: cinepakenc.c:89
mb_encoding best_encoding
Definition: cinepakenc.c:93
int skip_error
Definition: cinepakenc.c:92
int v1_vector
Definition: cinepakenc.c:88
int v4_error
Definition: cinepakenc.c:91
int v4_codebook[CODEBOOK_MAX *VECTOR_MAX]
Definition: cinepakenc.c:98
int v1_codebook[CODEBOOK_MAX *VECTOR_MAX]
Definition: cinepakenc.c:97
int v1_size
Definition: cinepakenc.c:99
CinepakMode mode
Definition: cinepakenc.c:101
#define av_malloc_array(a, b)
#define av_freep(p)
#define av_malloc(s)
#define av_log(a,...)
AVPacket * pkt
Definition: movenc.c:59
int size
#define mb
const char * b
Definition: vf_curves.c:118
const char * g
Definition: vf_curves.c:117
const char * r
Definition: vf_curves.c:116
else temp
Definition: vf_mcdeint.c:259
if(ret< 0)
Definition: vf_mcdeint.c:282
uint8_t bits
Definition: vp3data.h:141
uint8_t base
Definition: vp3data.h:141